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Abstract

Visual attention, which assigns weights to image regions

according to their relevance to a question, is considered as

an indispensable part by most Visual Question Answering

models. Although the questions may involve complex rela-

tions among multiple regions, few attention models can ef-

fectively encode such cross-region relations. In this paper,

we demonstrate the importance of encoding such relations

by showing the limited effective receptive field of ResNet

on two datasets, and propose to model the visual attention

as a multivariate distribution over a grid-structured Con-

ditional Random Field on image regions. We demonstrate

how to convert the iterative inference algorithms, Mean

Field and Loopy Belief Propagation, as recurrent layers

of an end-to-end neural network. We empirically evalu-

ated our model on 3 datasets, in which it surpasses the

best baseline model of the newly released CLEVR dataset

[13] by 9.5%, and the best published model on the VQA

dataset [3] by 1.25%. Source code is available at https:

//github.com/zhuchen03/vqa-sva.

1. Introduction

Visual Question Answering (VQA) is a comprehensive

task inspecting intelligent systems’ ability to recognize im-

ages and natural languages together. Advances in this area

not only benefit real-world applications which require the

synergistic reasoning of vision and language, such as query-

ing events in surveillance videos [34] and searching specific

goods in images [41], but also call for finer-grained under-

standing on the semantic structures of images.

Adoption of the visual attention mechanism like [38, 40,

24, 27] is a major source to boost performance of VQA. Vi-

sual attentions impose regularization on the models to find

the most relevant image regions to the question. Still, exper-

iments [6] point out that state-of-the-art models often fail to

identify the related regions like humans do. We argue this

problem comes from the fact that such attention models do

not take into account the spatial relations between regions

when predicting the attention. This is important because the
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Figure 1: An example of the proposed model on CLEVR, demon-

strating it is capable of inferring spatial relations despite the lim-

ited effective receptive field of the CNN. Question: What is the

color of the sphere on the right of the metal sphere? Our model

overcomes the unstructured attention’s tendency to attend to iso-

lated key words in the questions, attending to the right region and

giving the correct answer purple.

effective receptive field (ERF) of deep CNNs only covers a

small fraction of the image [25]. Even with memory mecha-

nism [37, 27, 40, 38], it is difficult to infer the right attention

corresponding to questions that involve the spatial relations

between regions without overlapping ERFs.

In this paper, we propose a novel neural network to

model the attention with a multivariate distribution which

considers the arrangements of image regions. We adopt the

most straightforward graph structure to model image region

arrangements - a grid-structured Conditional Random Field

(CRF) [29]. The framework of the proposed method is illus-

trated in Fig. 2. We show that attention can be formulated

as the marginal distribution of each hidden variable in the

CRF. Then, we implement the iterative approximate infer-

ence algorithms, Mean Field and Loopy Belief Propagation,

as recurrent layers of neural networks, which iteratively re-

fines the attention. An example of this process is shown in

Fig. 1. We evaluate the proposed model on three repre-
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sentative datasets, where our model is competitive with the

rule-based model [2] on the SHAPES dataset, and surpasses

the best baseline model of CLEVR by more than 9.5% and

best published method [17] on the VQA dataset by 1.25%.

We also demonstrate that the ERF on CLEVR and the VQA

dataset is not large enough for previous methods to answer

all questions involving object arrangements correctly.

Our work has the following contributions. First, we pro-

pose to model structured attentions with a CRF over image

regions for Visual Question Answering, to address the prob-

lem of limited effective receptive fields of CNNs. Second,

we demonstrate how to unfold both Mean Field and Loopy

Belief Propagation algorithms for CRF as recurrent layers

of neural networks, and perform comprehensive evaluation

of the two different networks on three challenging datasets.

Third, we give empirical evaluations of ERFs on CLEVR

and the MSCOCO dataset.

2. Related Work

There have been many different directions for improv-

ing VQA performance, including predicting answer types

[14], utilizing task-specific submodules [1, 2], and better

multimodal feature pooling methods [8, 17]. Our focus is

on structure-aware spatial attention applied on the visual

feature. There are two major forms of spatial attention for

VQA. One [31, 22, 11] is based on region proposals gener-

ated by Edge Box [43], and the other [38, 40, 24, 27, 8, 17]

predicts attention on the individual feature vectors of convo-

lutional feature maps. The most representative model SAN

[40] adopted multiple attention layers to support multi-step

reasoning. There are also methods [24, 27] that adopted

both image attention and question attention to refine the

image and question representation simultaneously. [38]

proved its ability to recognize absolute and relative posi-

tions with two simple experiments, but the model itself does

not consider the arrangement of regions and the success

may be attributed to the power of CNNs.

Some of the methods considered the structures of im-

ages. [26] adopted the Bayesian framework based on the

logic forms of segmentation results. The method was sur-

passed by some simple baseline models due to its demand

for better semantic segmentation [15]. The DMN [37]

adopted a bidirectional GRU that traverses the convolu-

tional feature map in a snake-like fashion to encode the de-

pendency of regions, which might not be the optimal choice

for the 2D structure of images. [22] concatenated the 8D

bounding box representation with the 4096D visual fea-

ture, in which the spatial information could be easily over-

weighed by the visual feature.

There have been a number of approaches combining neu-

ral networks and CRF to predict structured outputs in both

computer vision and natural language processing. [30] uti-

lized neural networks with sigmoid activation to predict the

unary potential for sequential labeling. [7] also used neu-

ral networks to predict the pairwise potential of labels. [4]

learned fixed pairwise potentials for word recognition and

image classification. [12] utilized CNNs to predict both

the unary potentials and higher-order potentials for uncon-

strained word recognition. [42] proposed to unfold the

Mean Field algorithm as recurrent layers for semantic seg-

mentation. It modeled the pairwise potential with Gaussian

kernels, which encourages similar features to take the same

label. Besides the supervised structure in the output layers,

[18] enforced the intermediate layers of neural networks to

learn structured attentions for natural language tasks.

To the best of our knowledge, structured attention has

not been explored for the complex task of VQA. We give

the first empirical evaluations on unfolding both Mean Field

and Loopy Belief Propagation as intermediate recurrent lay-

ers on the task of VQA, which can be seen as a further ex-

ploration of [18] in modeling 2D structures of visual data.

3. Attention Models and Methods

The general architecture of the proposed model is shown

in Fig. 2. Here we define some notations used across the

paper. We take the question feature q ∈ R
nQ from the last

time step of a GRU such as [20], and the image feature map

X = [x1, ...,xM ] ∈ R
nI×M from one of the convolution

layers of a CNN such as [10]. Here nQ, nI are the dimen-

sions of question and image feature vectors respectively,

and M is the total number of image feature vectors which

divides the image intoM regions. We use softmax(·) to de-

note the softmax activation function and σ(·) to denote the

sigmoid activation function. The attention mechanism in

VQA aims to produce a context c from X which represents

the visual feature related to the question.

3.1. Unstructured Categorical Attention

In previous methods for VQA, visual attention is usually

modeled as a single or multi-step soft-selection from X. As

shown in [39, 18], the soft-selection approach represents the

selected region index by a categorical latent variable z ∈
{1, ...,M} and defines c as an expectation of the selection:

c = E

[

∑

i

1{z=i} · xi

]

=
∑

i

p(z = i|X, q)xi, (1)

where 1{z=i} is an indicator function, and the distribution

of z is parameterized by

p(z = i|X, q) = softmax(Ug(xi, q)), (2)

where U ∈ R
1×nI and g(·) is some multimodal feature

pooling function such as [8, 17]. Noticing this model ig-

nores the spatial arrangement of the feature vectors in X in
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Figure 2: The whole picture of the proposed model. The inputs to the recurrent inference layers are the unary potential ψi(zi) and pairwise

potential ψij(zi, zj), computed with Eq. 8. ψi(zi) can also be used as an additional glimpse, which usually detects the key nouns. In

the inference layers, xi represents b(i) for MF and m(i) for LBP. The recurrent inference layers generates a structured glimpse with MF

or LBP. The 2 glimpses are used to weight-sum the visual feature vectors. The classifier use both of the attended visual features and the

question feature to predict the answer. The demonstration is a real case.

each step, and the resulting hidden states in multi-step mod-

els [39, 38] are still unstructured, we have dropped the hid-

den states in the condition presented in [38] for notational

convenience.

Since categorical distribution only requires the probabil-

ities to be positive and sum to 1, the following normalized

sigmoid attention is still a valid categorical attention:

p(z = i|X, q) =
σ(Ug(xi, q))

∑

j σ(Ug(xj , q))
. (3)

We can use such attention as a glimpse1 of our model, which

will be introduced in Section 3.4.

3.2. Structured Multivariate Attention

To consider the arrangement of X, we adopt a structured

multivariate attention model similar to [18], in which we

consider the distribution z ∼ p(z|X, q) as a vector of binary

latent variables z = [z1, ..., zM ]T with zi = 1 if xi is related

to the question and zi = 0 otherwise. Multiple regions can

now be selected at the same time. We define the context as

the expectation of the sum over all related regions, which

can be derived as a sum of xi weighted by the marginal

probability p(zi = 1|X, q):

Ez∼p(z|X,q)[Xz] =
∑

i

p(zi = 1|X, q)xi. (4)

Let S =
∑

i p(zi = 1|X, q). Since 0 ≤ S ≤ M and M is

relatively large, to reduce covariate shift, we normalize the

expectation to get the context c:

c =
1

S

∑

i

p(zi = 1|X, q)xi, (5)

1Glimpses refer to multiple attentions, same as in [8, 17].

We model the distribution p(z|X, q) in the most straight-

forward form, a grid-structured Conditional Random Field,

which represents the joint probability p(z|X, q) with a grid-

structured factor graph that considers the pairwise joint dis-

tribution of a region’s 4-neighbourhood, as shown in Fig. 2.

Let N = {(i, j)|i < j, j ∈ Ni}, where Ni is the set of i’s
neighbors on the graph. The grid-structured CRF assumes

p(z|X, q) =
1

Z

∏

(i,j)∈N

ψij(zi, zj)
∏

i

ψi(zi), (6)

where the unary potential ψi(zi) ≥ 0 measures the likeli-

hood of region i taking the value zi ∈ {0, 1}, and the pair-

wise potential ψij(zi, zj) ≥ 0 measures the likelihood of

regions (i, j) taking values zi, zj respectively.

3.3. Recurrent Inference Layers

The inference problem in such a gird-structured factor

graph, which aims to calculate the marginal probability

p(zi|X, q; θ), is known to be NP-hard [32]. Still, there

are approximate inference algorithms to solve the problem,

such as Mean Field (MF) and Loopy Belief Propagation

(LBP). These algorithms take potential functions ψi(zi)
and ψij(zi, zj) as inputs and update p(zi|X, q; θ) iteratively

through message passing. We train neural networks to pre-

dict optimal ψi(zi) and ψij(zi, zj) and then run the algo-

rithms for a fixed number of T steps. The iterative algo-

rithms are implemented as recurrent inference layers in the

neural network.

3.3.1 Potential Functions

In VQA, the potential functions should depend on both the

image and the question. We use low-rank bilinear pooling

[17], a parsimonious bilinear model, to capturing the inter-

action between 2 feature vectors x,y:

g(x,y;Px,Py) = tanh(Pxx)⊙ tanh(Pyy), (7)
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Algorithm 1 MF Recurrent Layer in VQA

Input: ψi(zi), lnψij(zi, zj)

initialize b
(0)
i (zi) = ψi(zi)

for t=1:T do

for i = 1 :M , zi in {0, 1} do

s←0

for j in Ni, zj in {0, 1} do

s←s+b
(t−1)
j (zj) lnψij(zi, zj)

b
(t)
i (zi)← ψi(zi) exp(s)

normalize(b
(t)
i )

return b
(T )
i (zi)

where Px,Py are learnt projection matrices projecting x,y
to the same dimension, and ⊙ represents Hadamard prod-

uct. Based on this, we model ψi(zi) and ψij(zi, zj) as fol-

lowing:

ψi(zi = 1) = σ (Ug (xi, q;Ux,Uq)) , (8)

ψi(zi = 0) = 1− ψi(zi = 1), (9)

ψij(zi, zj) = h
(

vzizjg
(

yij , q;Vy,Vq

))

, (10)

where Ux ∈ R
nc×nI ,Uq ∈ R

nc×nQ , U ∈ R
1×nc ,Vy ∈

R
nc×2nI ,Vq ∈ R

nc×nQ are learnt projection matrices,

vzizj is a row vector of V ∈ R
4×nc indexed by zi and zj ,

yij = [xT
i ,x

T
j ]

T , nc is the common projection dimension,

h(·) is a certain activation function which will differ in the

2 inference algorithms.

3.3.2 Mean Field Layers

The Mean Field algorithm approximates the distribution

p(z|X, q) in Eq. 6 with a fully factorized distribution q(z):

q(z) =
∏

i

bi(zi),

where bi(zi) are variational parameters corresponding to the
marginal probabilities p(zi|X, q). The variational parame-
ters are optimized by iteratively minimizing the mean-field
free energy

FMF (bi) =−
∑

(i,j)∈N

∑

zi,zj

bi(zi)bj(zj) lnψij(zi, zj)

+
∑

i

∑

zi

bi(zi)[ln bi(zi)− lnψi(zi)]
(11)

subject to the constraint
∑

zi
bi(zi) = 1, which is shown

to be equivalent to minimizing the KL divergence be-
tween p(z|X, q) and q(z) [35]. Specifically, MF initializes

b
(0)
i (zi) = ψi(zi) and updates b

(t)
i (zi) as:

b
(t)
i (zi) = αψi(zi) · exp





∑

j∈Ni

∑

zj

b
(t−1)
j (zj) lnψij(zi, zj)



 ,

(12)

Algorithm 2 LBP Recurrent Layer in VQA

Input: ψi(zi), ψij(zi, zj)

initialize m
(0)
ij (zj) = 0.5, m

(t)
ij (zj) = 0 for t > 0

for t=1:T do

for j = 1 :M , i in Nj do

for zi in {0, 1} do

s(zi)←1

for k in Ni \ {j} do

s(zi)← s(zi) ·m
(t−1)
ki (zi)

for (zi, zj) in {0, 1} × {0, 1} do

m
(t)
ij (zj)← m

(t)
ij (zj) + ψij(zi, zj)ψi(zi)s(zi)

normalize(m
(t)
ij )

for i = 1 :M do

bi(zi)← ψi(zi)
for k in Ni, zi in {0, 1} do

bi(zi)← bi(zi) ·m
(T )
ki (zi)

normalize(bi)

return bi(zi)

where α is the normalizing constant. Since Eq. 12 only

involves lnψij(zi, zj), we adopt a log model for pairwise

potential,

lnψij(zi, zj) = tanh(vzi,zjg(yij , q;Vy,Vq)). (13)

MF can be unfolded as a recurrent layer of neural networks

without parameters, where in each step t the inputs are

ψi(zi), ψij(zi, zj) and b
(t−1)
i (zi), as demonstrated by Al-

gorithm 1.

3.3.3 Loopy Belief Propagation Layers

Loopy Belief Propagation can be applied similarly by ini-
tializing all messages to a fixed value and updating the mes-
sages iteratively in a fixed or random order [29]. In our grid-
structured graph, since each factor is connected to only 2
variables, the variable-to-factor and factor-to-variable mes-
sages can be merged as a single message mij , representing

the message from zi to zj . We initialize m
(0)
ij (zj) = 0.5,

and iteratively update the messages based on the formula

m
(t)
ij (zj) = α

∑

zi

ψij(zi, zj)ψi(zi)·
∏

k∈Ni\{j}

m
(t−1)
ki (zi), (14)

where α is the normalizing constant as above. After a fixed

number of steps T , the variable zi gathers all the messages

from its neighbourhood to get the marginal probability:

bi(zi) = βψi(zi)
∏

k∈Ni

m
(T )
ki (zi), (15)

where β is the normalizing constant.

Similar to MF, LBP can also be unfolded into param-

eterless recurrent layer, where at each time step t the in-

put is ψi(zi), ψij(zi, zj) and m
(t−1)
ij (zj), and after T steps
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m(T )(zi) is used to compute marginal probability bi(zi), as

shown in Algorithm 2.

3.4. The overall structure

As shown in Fig. 2, the overall structure of the pro-

posed model is an end-to-end classification neural network.

Firstly, ψi(zi) and ψij(zi, zj) are computed using the ex-

tracted features X and q. Then, the recurrent inference lay-

ers run for T steps to get the structured marginal probability

p(zi = 1|X, q) = b
(T )
i (zi = 1), which is then used to com-

pute the structured context ĉ with Eq. 5. We also compute

a unstructured context c̃ with Eq. 1 by replacing Ug(xi, q)
in Eq. 3 with ψi(zi = 1). In the classifier, the contexts are

both pooled with the question to get

ŝ = g(ĉ, q;Ŵc,Ŵq), (16)

s̃ = g(c̃, q;W̃c,W̃q), (17)

where Ŵc,W̃c ∈ R
nc×nI , Ŵq,W̃q ∈ R

nc×nQ . The an-

swer is predicted with

a = arg max
k∈ΩK

softmax(wk[ŝ
T , s̃T ]T ), (18)

where wk is the k-th row of W ∈ R
K×2nc , K is the num-

ber of answers, ΩK is the answer space with up to K an-

swers.

4. Experiments

4.1. Datasets

The SHAPES dataset [2] is a synthetic dataset consist-

ing of images containing 3 basic shapes in 3 different colors

with a resolution of 30×30, and queries about the arrange-

ments of the basic shapes, as shown in Fig. 3. The answer

is “yes” when the image satisfies the query, and “no” other-

wise. There are 3 different lengths of queries. The original

dataset [1] has 14592 and 1024 image/question pairs for the

training and test sets. All the queries in the test set do not

appear in the training set.

The CLEVR dataset [13] is a much more complex but

unbiased synthetic dataset aiming at testing visual abilities

such as counting, comparing and logical reasoning. It con-

sists of 100,000 images of simple 3D objects with random

shapes, sizes, materials, colors and positions with a reso-

lution of 320×480, and nearly a million natural language

questions, 853,554 of which are unique. The questions can

be categorized into 5 general types: exist, count, compare

integer, query attribute, and compare attribute. There are

699,989 training questions, 149,991 validation questions

and 149,988 test questions. The vocabulary sizes for the

questions and answers are 82 and 28 respectively.

The VQA real-image dataset [3] is a comprehensive

dataset which requires knowledge beyond the dataset to an-

swer all the questions correctly. It has about 204,721 images

from MSCOCO [23] each with 3 natural language ques-

tions, and each question has 10 answers collected from on-

line workers. It consists of 3 splits: train, val and test,

each of which has 248,349, 121,512 and 244,302 questions

respectively. test-dev is a subset of test, which has

60,864 questions. We keep a collection of 2,000 most fre-

quent answers from the union of train and val, and ig-

nore questions with no answers from this collection, which

leaves us 334,554 samples for training. With the same pre-

processing procedure as [8, 17], we also get 837,298 train-

ing samples from Visual Genome [21] for augmentation.

4.2. Model Configuration and Training

For extracting image features, we use a 2-layer LeNet

trained with the whole network on SHAPES as in [1],

and ImageNet-pretrained ResNets [10] on CLEVR and the

VQA dataset. For sentence embedding, we use single-layer

GRU. On the SHAPES dataset, we set nc = 128, nQ =
128, nI = 50,M = 9. On CLEVR, following [13], we re-

size the input images to 224× 224, and use feature maps at

the res4b22 layer of ResNet-101 (nI = 1024,M = 196)

and the res5c layer of ResNet-152 (nI = 2048,M = 49)

in different experiments. We also set nQ = 2048, compa-

rable to the 2-layer LSTM with 1024 units per layer used in

[13]. On the VQA dataset, we fix nc = 1200. Images are

resized to 448 × 448 and we use the feature at the res5c

layer of ResNet-152 (nI = 2048,M = 196 ), the same as

[24, 8, 17]. We set nQ = 2400 since we use the pre-trained

skip-thought vector [20] provided by [17] as initialization.

For training, we implement our network with MXNet

[5]. In all 3 tasks, we use the Adam optimizer [19] with

the default setting except for the learning rate, which is

picked using grid search. We adopt Bayesian dropout [9]

for GRU’s as in [17], and apply dropout [33] before every

other fully connected layer. On SHAPES and CLEVR, we

find setting both dropout probability to 0.2 to be optimal,

while on the VQA dataset, setting a small Bayesian dropout

0.25 for the GRU and a large dropout of 0.5 for the other

parts achieved the optimal results. In addition, we use an-

swer sampling by default on the VQA dataset as in [8, 17].

4.3. Visualization of ERF

To visualize the ERF, we need to compute the influence
of a pixel Iij ∈ R

3 on the entry ynrc, the feature at (r, c)
of the n-th channel in a certain conv layer, represented by
∥∂ynrc/∂Iij∥. As in [25], we assume a loss function lnrc
which is related only to channel ynrc, i.e., ∂lnrc/∂y

n
rc = 1

and ∂lnrc/∂y
n
ij = 0 for i ̸= r or c ̸= j, so that ∂ynrc/∂Iij =

∂lnrc/∂Iij , since ∂lnrc/∂Iij can be computed efficiently by
DL frameworks. Finally, we draw the heat map of the total
effect of a subset ΩC of channels:

Eij =

∥

∥

∥

∥

∥

∥

∑

n∈ΩC

(

∂lnrc
∂Iij

)2

∥

∥

∥

∥

∥

∥

. (19)
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Figure 3: Visualization of MF-G2 and LBP-G2 on the test set of

large. b(0) or ψi represents the initial attention, b(3) or b repre-

sents the refined attention after MF or LBP. The query looks for a

green object under a circle.

Query Length 3 4 5 All

% of test set 12.5 62.5 25 -

small NMN[2] 91.4 95.6 92.6 94.3

SIG-G2 57.0 70.5 66.8 67.9

MF-G2 53.1 71.4 66.0 67.8

LBP-G2 63.3 72.2 62.5 68.7

medium NMN 99.2 92.1 85.2 91.3

SIG-G2 68.8 79.6 73.8 76.8

MF-G2 98.0 99.6 71.5 92.4

LBP-G2 87.1 99.5 71.9 91.0

large NMN 99.7 94.2 91.2 94.1

SIG-G2 93.2 95.6 72.5 89.5

MF-G2 99.7 99.9 79.2 94.7

LBP-G2 95.1 100 78.9 94.1

Table 1: Accuracy on SHAPES.

4.4. Results and Analysis

We perform experiments on the 3 datasets, in which we

fix the general structure except for the visual attention mod-

els, to quantify the role of structured attention in our model

and the best configuration for it. We will use the following

abbreviations to distinguish the models we implemented:

• SM/SIG: 1-glimpse softmax or sigmoid attention.

• MF/LBP: 1-glimpse multivariate attention with a MF

or LBP recurrent layer and a default T = 3.

• MODEL-G2: 2-glimpses with a default T = 3, where

MODEL=SIG,MF or LBP is the attention model.

• MF-SIG/LBP-SIG: 2-glimpse model by concatenating

a MF or LBP attention with a SIG attention, as men-

tioned in Section 3.4.

• MODEL-Tn: MODEL with T = n inference steps.

4.4.1 On SHAPES

In this part, we will look into the influence of the volume

of the data on our model’s generalization, and compare the

performance of SIG-G2, MF-G2 and LBP-G2 models. We

find it is difficult for all 3 models to generalize with the same

amount of data as [1]. This may because [1] uses a parser

to understand the queries with guaranteed correctness on

this dataset, while we have to train the GRU to understand

the queries from scratch. The parser-based method may

not perform well in more general tasks such as the VQA

dataset, since they found using fewer modules on the VQA

dataset turned out to be better, but our RNN-based approach

should generalize better with enough training data. So we

generate more data with the same answer distributions for

each query as [1] to train and test our model, and re-trained

their model using the released code. We name the origi-

nal dataset small, and the newly generated datasets with

2 and 3 times as much data in both training and test sets as

medium and large respectively. We find with more train-

ing data, our model becomes competitive with [1] and the

MF-G2 model surpasses it on both medium and large, as

shown in Table 1. Our models are extremely good at han-

dling length-4 queries, which looks for object arrangements

in 4-neighborhood, as demonstrated in Fig. 3. The high ac-

curacy also implies the model is capable of set theory rea-

soning, since it achieved high test accuracy with length-3

queries which contain self-conflict queries such as is red

green, which aims to find an object that is both red and

green. For complex queries, such as is red below below

green, which aims to find a red object below another object

that is below a green object, it is not as competitive as [1],

probably because the GRU in our model has not generalized

to higher order logic.

4.4.2 On CLEVR

In this part, we study the role of different visual features

and different kinds of attentions on the performance, and

test our best models on the test set, as shown in Table 2.

Our best model surpasses the best baseline model in [13] by

more than 9.5% on the test set. Both MF and LBP outper-

form SM and SIG, demonstrating the effectiveness of our

method. The maximum margin of MF/LBP vs. SIG on

overall accuracy is 2.62% and 1.33% with the ResNet-152

and ResNet-101 features respectively. The most significant

improvement of MF/LBP over other models is on Com-

pare Attribute, which involves comparing specific attributes

of objects specified by spatial relations with other objects.

This also proves that our model alleviates the problem of

previous methods of ignoring arrangements of regions. Fur-

ther, we show the receptive fields of the 2 selected layers on

the test set in Fig. 4. In each image, we choose the feature

vector closest to the center, where there is a higher chance

for objects to appear. Still, both of them only occupy a small

portion of the image, indicating the importance of consider-

ing the structure of regions. Overall, the performance with

res4b22 features is better than that with res5c features.

From the ERF point of view, the ERF of res5c has more
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res5c on CLEVR res5c on CLEVR res5c on MSCOCO

Figure 4: The average ERF [25] of 32 channels chosen at regular

intervals, on 15000 images from the CLEVR test set and 52500

images from the MSCOCO test set with resolution of 224 × 224
and 448 × 448 respectively. The ERF images are smoothed with

σ = 4 Gaussian kernels.

All Exist Count CI QA CA

res5c CLEVR validation

SM 68.80 73.20 53.16 76.52 81.58 56.77

SIG 70.52 73.90 53.89 76.52 82.46 63.06

MF 73.14 76.46 56.89 77.43 83.72 68.76

LBP 72.30 76.32 54.92 77.50 83.35 67.54

MF-SIG 73.19 76.53 56.22 78.56 84.23 68.34

LBP-SIG 73.33 77.50 56.39 77.97 84.09 68.70

res4b22 CLEVR validation

SM 75.63 77.69 57.79 78.63 87.76 71.83

SIG 75.32 76.54 58.93 78.12 87.94 69.38

MF 76.65 77.90 58.87 80.48 88.10 74.34

LBP 76.21 78.97 57.52 80.14 87.90 73.43

MF-SIG 77.4 79.8 61.0 79.3 88.0 75.1

LBP-SIG 77.97 79.7 61.39 80.17 88.54 76.31

res4b22 CLEVR test

MCB[13] 51.4 63.4 42.1 63.3 49.0 60.0

SAN[13] 68.5 71.1 52.2 73.5 85.2 52.2

MF-SIG 77.57 80.05 60.69 80.08 88.16 75.27

LBP-SIG 78.04 79.63 61.27 80.69 88.59 76.28

Table 2: Accuracy on CLEVR. CI, QA, CA stand for Count Inte-

ger, Query Attribute and Compare Attribute respectively. The top

half uses ResNet-152 features and the bottom half uses ResNet-

101 features. Our best model uses the same visual feature as [13].

than twice the area as the ERF of res4b22. As a result,

the feature vector of res5c may require more than twice

the number of parameters to represent same amount of in-

formation in this region as res4b22, but its has only twice.

4.4.3 On the VQA dataset

Since we have found MF-SIG and LBP-SIG are the best on

CLEVR, in this part, we mainly compare the two models

with different T . Notice now the total number of glimpses

is the same as MCB [8] and MLB [17], and both of them use

res5c features and better feature pooling methods. The

optimal choice in these experiments is MF-SIG-T3, which

is 0.92% higher in overall accuracy than the previous best

method [17], and outperforms previous methods on all 3

general categories of questions. We then use external data

from Visual Genome to train MF-SIG-T3 and MF-T3, in

Model All Y/N No. Other

MCB[8] 64.7 82.5 37.6 55.6

MLB[17] 65.08 84.14 38.21 54.87

MF-SIG-T1 65.90 84.22 39.51 56.22

MF-SIG-T2 65.89 84.21 39.57 56.20

MF-SIG-T3 66.00 84.33 39.34 56.37

MF-SIG-T4 65.81 84.22 38.96 56.16

LBP-SIG-T1 65.93 84.31 39.27 56.26

LBP-SIG-T2 65.90 84.23 39.70 56.16

LBP-SIG-T3 65.81 84.05 39.76 56.12

LBP-SIG-T4 65.73 84.08 38.87 56.13

MCB+VG[8] 65.4 82.3 37.2 57.4

MLB+VG[17] 65.84 83.87 37.87 56.76

MF+VG 67.17 84.77 39.71 58.34

MF-SIG+VG 67.19 84.71 40.58 58.24

On test-dev2017 of VQA2.0

MF-SIG+VG 64.73 81.29 42.99 55.55

Table 3: Results of the Open Ended task on test-dev.

Open Ended MC

Single Model All Y/N No. Other All

SMem[38] 58.24 80.8 37.53 43.48 -

SAN[40] 58.85 79.11 36.41 46.42 -

D-NMN[1] 59.4 81.1 38.6 45.5 -

ACK[36] 59.44 81.07 37.12 45.83 -

FDA[11] 59.54 81.34 35.67 46.10 64.18

QRU[22] 60.76 - - - 65.43

HYBRID[14] 60.06 80.34 37.82 47.56 -

DMN+[37] 60.36 80.43 36.82 48.33 -

MRN[16] 61.84 82.39 38.23 49.41 66.33

HieCoAtt[24] 62.06 79.95 38.22 51.95 66.07

RAU[28] 63.2 81.7 38.2 52.8 67.3

MLB[17] 65.07 84.02 37.90 54.77 68.89

MF-SIG-T3 65.88 84.42 38.94 55.89 70.33

Ensemble Model

MCB[8] 66.47 83.24 39.47 58.00 70.10

MLB[17] 66.89 84.61 39.07 57.79 70.29

Ours 68.14 85.41 40.99 59.27 72.08

Ours test2017 65.84 81.85 43.64 57.07 -

Table 4: Results of the Open Ended and Multiple Choice tasks

on test. We compare the accuracy of single models (without

augmentation) and ensemble models with published methods.

which MF-SIG surpassed MLB under the same condition

by 1.35%. The accuracy boost of our model is higher than

MCB and MLB, showing that our model has higher capac-

ity. The LBP models, which performs better than MF layers

on CLEVR, turns out to be worse on this dataset, and T = 1
is the optimal choice for LBP. We also find the single MF at-

tention model, which should not be as powerful as MF-SIG,

achieved 67.17% accuracy with augmentation. These might

be caused by the bias of the current VQA dataset [3], where

there are questions with fixed answers across all involved

images. We also show the results on test, as shown in Ta-

ble 4. Our model is the best among published methods with-

out external data. With an ensemble of 3 MF-T3 and 4 MF-

SIG-T3 models, we achieve 68.18% accuracy on test,

1.25% higher than best published ensemble model on the
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Q: What is the size of the object that is both right of the cyan sphere and left of the tiny red 

metallic object? 

MF: small.  LBP: small. SIG: large.

Q: the tiny gray object that is made of the same material as the gray cube is what shape? 

MF: sphere. LBP: sphere. SIG: cube.

Figure 5: Two instances of different attentions on CLEVR, where

the SIG model gives wrong answers but MF-SIG and LBP-SIG

both give the correct answer. For each instance, from left to right,

the first row to the second row, the images are: input image, b(0)

of MF-SIG, b(3) of MF-SIG, ψi(zi) of LBP-SIG, b of LBP-SIG,

attention of SIG. Notations are the same as in Fig. 3. Best viewed

in color.

Open Ended task. By the date of submission, we rank the

second on the leaderboard of Open Ended task and the first

on that of the Multiple Choice task. The champion on Open

Ended has an accuracy of 69.94% but the method is not pub-

lished. We have also recorded our model’s performance on

the test-dev2017 and test2017 of VQA2.0 in Table

3 and 4. Accuracy on test2017 is achieved with 8 snap-

shots from 4 models with different learning rates.

4.4.4 Qualitative Results

We demonstrate some attention maps on CLEVR and the

VQA dataset to analyze the behavior of the proposed mod-

els. Fig. 5 shows 2 instances where the SIG model failed but

both MF and LBP succeeded. We find the MF-SIG model

has learned interesting patterns where its attention often

covers the background surrounding the target initially, but

converges to the target after iterative inference. This phe-

nomenon almost never happens with the LBP-SIG model,

which usually has better initializations that contained the

target region. The shortcoming of the unstructured SIG

model is also exposed in the 2 instances, where it tends to

get stuck with the key nouns of the question. Fig. 6 demon-

strates 3 instances of the MF-SIG model together with the

effective receptive field. The model gives 2 correct answers

for the first 2 instances and 1 wrong answer for the last in-

Q: What color is the tag on the top of the luggage? Predict: yellow

Q: What color is the man in the front wearing? Predict: red

Q: How many light bulbs are above the mirror? Predict: 2

Input ERF �( ) �(!)

Figure 6: Some instances in the VQA dataset. The ERFs locate at

the target region in row 1 and 3, and at at initial attention in row 2.

Best viewed in color.

stance. In the first instance, the ERF at the target should

be enough to encode the relations. The initial attention in-

volves some extra areas due to the key word “luggage”, but

it manages to converge to the most relevant region. In the

second instance, the initial attention is wrong, as we can

see the ERF at the initial attention does not overlap with the

target, but with the help of MF, the final attention captures

the relation “in the front” and gives an acceptable answer.

In the third instance, the ERF at the target region is very

weak on the keyword “bulb”, which means the feature vec-

tor does not encode this concept, probably due to the size of

the bulb. The model fails to attend to the right region and

gives a popular answer “2” (3rd most popular answer on the

VQA dataset) according to the type of the question.

5. Conclusion

In this paper, we propose a novel structured visual at-

tention mechanism for VQA, which models attention with

binary latent variables and a grid-structured CRF over these

variables. Inference in the CRF is implemented as recurrent

layers in neural networks. Experimental results demonstrate

that the proposed method is capable of capturing the seman-

tic structure of the image in accordance with the question,

which alleviates the problem of unstructured attention that

captures only the key nouns in the questions. As a result,

our method achieves state-of-the-art accuracy on three chal-

lenging datasets. Although structured visual attention does

not solve all problems in VQA, we argue that it should be

an indispensable module for VQA in the future.
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