
Learning for Active 3D Mapping

Karel Zimmermann, Tomáš Petřı́ček, Vojtěch Šalanský, and Tomáš Svoboda
Czech Technical University in Prague, Faculty of Electrical Engineering

zimmerk@fel.cvut.cz

Abstract

We propose an active 3D mapping method for depth sen-

sors, which allow individual control of depth-measuring

rays, such as the newly emerging solid-state lidars. The

method simultaneously (i) learns to reconstruct a dense 3D

occupancy map from sparse depth measurements, and (ii)

optimizes the reactive control of depth-measuring rays. To

make the first step towards the online control optimization,

we propose a fast prioritized greedy algorithm, which needs

to update its cost function in only a small fraction of pos-

sible rays. The approximation ratio of the greedy algo-

rithm is derived. An experimental evaluation on the sub-

set of the KITTI dataset demonstrates significant improve-

ment in the 3D map accuracy when learning-to-reconstruct

from sparse measurements is coupled with the optimization

of depth measuring rays.

1. Introduction

Development of autonomous vehicles such as self-

driving cars or ground robots has attracted substantial atten-

tion of the robotics community in the last few years. One of

the reasons is that an accurate 3D perception, which is an es-

sential component for many fundamental capabilities such

as emergency braking, predictive active damping or self-

localization from offline maps [12], has finally become pos-

sible. Since state-of-the-art rotating lidars are very expen-

sive, heavy and contain moving parts prone to mechanical

wear, several manufacturers have announced the develop-

ment of cheaper, lighter, smaller and motionless solid-state

lidars (SSL), which should become available soon [1].

In contrast to rotating lidars, the SSL uses an opti-

cal phased array as a transmitter of depth measuring light

pulses. Since the built-in electronics can independently

steer pulses of light by shifting its phase as it is projected

through the array, the SSL can focus its attention on the

parts of the scene important for the current task. Task-driven

reactive control steering hundreds of thousands of rays per

second using only an on-board computer is a challenging

problem, which calls for highly efficient parallelizable al-

Figure 1. Active 3D mapping with Solid State Lidar. Iteratively

learned deep convolutional network reconstructs local dense oc-

cupancy map from sparse depth measurements. The local map

is registered to a global occupancy map, which in turn serves as

an input for the optimization of depth-measuring rays along the

expected vehicle trajectory. The dense occupancy maps are visu-

alized as isosurfaces.

gorithms. As a first step towards this goal, we propose an

active mapping method for SSL-like sensors, which simul-

taneously (i) learns to reconstruct a dense 3D voxel-map

from sparse depth measurements and (ii) optimize the re-

active control of depth-measuring rays, see Figure 1. The

proposed method is evaluated on a subset of the KITTI

dataset [5], where sparse SSL measurements are artificially

synthesized from captured lidar scans, and compared to a

state-of-the-art 3D reconstruction approach [3].

The main contribution of this paper lies in propos-

ing a computationally tractable approach for very high-

dimensional active perception task, which couples learning

of the 3D reconstruction with the optimization of depth-

measuring rays. Unlike other approaches such as active

object detection [6] or segmentation [7], SSL-like reac-

tive control has significantly higher dimensionality of the

state-action space, which makes a direct application of un-

supervised reinforcement learning [6] prohibitively expen-

1539

sive. Keeping the on-board reactive control in mind, we

propose prioritized greedy optimization of depth measur-

ing rays, which in contrast to a naı̈ve greedy algorithm re-

evaluates only 1/500 rays in each iteration. We derive the

approximation ratio of the proposed algorithm.

The 3D mapping is handled by an iteratively learned con-

volution neural network (CNN), as CNNs proved their su-

perior performance in [3, 17]. The iterative learning pro-

cedure stems from the fact that both (i) the directions in

which the depth should be measured and (ii) the weights of

the 3D reconstruction network are unknown. We initialize

the learning procedure by selecting depth-measuring rays

randomly to learn an initial 3D mapping network which es-

timates occupancy of each particular voxel. Then, using

this network, depth-measuring rays along the expected ve-

hicle trajectory can be planned based on the expected recon-

struction (in)accuracy in each voxel. To reduce the training-

planning discrepancy, the mapping network is re-learned on

optimized sparse measurements and the whole process is it-

erated until validation error stops decreasing.

2. Previous work

High performance of image-based models is demon-

strated in [14], where a CNN pooling results from multi-

ple rendered views outperforms commonly used 3D shape

descriptors in object recognition task. Qi et al. [10] com-

pare several volumetric and multi-view network architec-

tures and propose an anisotropic probing kernel to close the

performance gap between the two approaches. Our network

architecture uses a similar design principle.

Choy et al. [3] proposed a unified approach for single

and multi-view 3D object reconstruction which employs a

recurrent neural architecture. Despite providing competi-

tive results in the object reconstruction domain, the archi-

tecture is not suitable for dealing with high-dimensional

outputs due to its high memory requirements and would

need significant modifications to train with full-resolution

maps which we use. We provide a comparison of this

method to ours in Sec. 6.2, in a limited setting.

Model-fitting methods such as [13, 15, 11] rely on a

manually-annotated dataset of models and assume that ob-

jects can be decomposed into a predefined set of parts. Be-

sides that these methods are suited mostly for man-made

objects of rigid structure, fitting of the models and their

parts to the input points is computationally very expensive;

e.g., minutes per input for [13, 15]. Decomposition of the

scene into plane primitives as in [8] does not scale well with

scene size (quadratically due to candidate pairs) and could

not most likely deal with the level of sparsity we encounter.

Geometrical and physical reasoning comprising stabil-

ity of objects in the scene is used by Zheng et al. [18] to

improve object segmentation and 3D volumetric recovery.

Their assumption of objects being aligned with coordinate

axes which seems unrealistic in practice. Moreover, it is not

clear how to incorporate learned shape priors for complex

real-world objects which were shown to be beneficial for

many tasks (e.g., in [9]). Firman et al. [4] use a structured-

output regression forest to complete unobserved geometry

of tabletop-sized objects. A generative model proposed by

Wu et al. [17], termed Deep Belief Network, learns joint

probability distribution p(x, y) of complex 3D shapes x

across various object categories y.

End-to-end learning of stochastic motion control policies

for active object and scene categorization is proposed by Ja-

yaraman and Grauman [6]. Their CNN policy successively

proposes views to capture with RGB camera to minimize

categorization error. The authors use a look-ahead error

as an unsupervised regularizer on the classification objec-

tive. Andreopoulos et al. [2] solve the problem of an ac-

tive search for an object in a 3D environment. While they

minimize the classification error of a single yet apriori un-

known voxel containing the searched object, we minimize

the expected reconstruction error of all voxels. Also, their

action space is significantly smaller than ours because they

consider only local viewpoint changes at the next position

while the SSL planning chooses from tens of thousands of

rays over a longer horizon.

3. Overview of the active 3D mapping

We assume that the vehicle follows a known path con-

sisting of L discrete positions and a depth measuring device

(SSL) can capture at most K rays at each position. The set

of rays to be captured at position l is denoted Jl.
We denote Y the global ground-truth occupancy map,

Ŷ its estimate, and X the map of the sparse measurements.

All these map share common global reference frame cor-

responding to the first position in the path. For each of

these maps there are local counterparts yl, ŷl, and xl, re-

spectively. Local maps corresponding to position l all share

a common reference frame which is aligned with the sensor

and captures its local neighborhood. The global ground-

truth map Y is used to synthesize sensor measurements xl

and to generate local ground-truth maps yl for training.

The active mapping pipeline, consisting of a measure-

reconstruct-plan loop, is depicted in Fig. 1 and detailed in

Alg. 1. Neglecting sensor noise, the set of depth-measuring

rays obtained from the planning, the measurements xl, and

the resulting reconstruction Ŷ can all be seen as a determin-

istic function of mapping parameters θ and Y. If we assume

that that ground-truth maps Y come from a probability dis-

tribution, both learning of θ and planning of the depth-

measuring rays approximately minimize common objective

EY{L(Y, Ŷ(θ,Y))}, (1)

where L(Y, Ŷ) =
∑

i wi log(1 + exp(−YiŶi)) is the

weighted logistic loss, Yi ∈ {−1, 1} and Ŷi ∈ R denote

1540

Algorithm 1 Active mapping

1: Initialize position l ← 0 and select depth-measuring

rays randomly.

2: Measure depth in the directions selected for position l
and update global sparse measurements X and dense

reconstruction Ŷ with these measurements.

3: Obtain local measurements xl by interpolating X.

4: Compute local occupancy confidence ŷl = hθ(xl) us-

ing the mapping network hθ.

5: Update global occupancy confidence Ŷ ← Ŷ + ŷl.

6: Plan depth-measuring rays along the expected vehicle

trajectory over horizon L given reconstruction Ŷ.

7: Repeat from line 2 for next position l← l + 1.

the elements of Y and Ŷ, respectively, corresponding to

voxel i. In learning, wi ≥ 0 are used to balance the two

classes, empty with Yi = −1 and occupied with Yi = 1,

and to ignore the voxels with unknown occupancy. We

assume independence of measurements and use, for corre-

sponding voxels i, additive updates of the occupancy con-

fidence Ŷi ← Ŷi + hi(xl) with hi(xl) ≈ log(Pr(Yi =
1|xl)/Pr(Yi = −1|xl)). Pr(Yi = 1|xl) denotes the condi-

tional probability of voxel i being occupied given measure-

ments xl and σ(Ŷi) = 1/(1 + e−Ŷi) is its current estimate.

4. Learning of 3D mapping network

The learning is defined as approximate minimization of

Equation 1. Since (i) the result of planning xl (θ,Y) is not

differentiable with respect to θ and (ii) we want to reduce

variability of training data1, we locally approximate the cri-

terion around a point θ0 as

EY{
∑

l

L(yl,hθ(xl(θ
0,Y)))} (2)

by fixing the result of planning in xl(θ
0,Y). The learning

then becomes the following iterative optimization

θt = argmin
θ

EY{
∑

l

L(yl,hθ(xl(θ
t−1,Y)))}, (3)

where minimization in particular iterations is tackled by

Stochastic Gradient Descent. Learning is summarized in

Alg. 2.

Note, that in order to achieve (i) local optimality of the

criterion and (ii) statistical consistency of the learning pro-

cess (i.e., that the training distribution of sparse measure-

ments xl corresponds to the one obtained by planning), one

would have to find a fixed point of Equation 3. Since there

are no guarantees that any fixed point exists, we instead it-

erate the minimization until validation error is decreasing.

The mapping network consists of 6 convolutional layers

1We introduce a canonical frame by using the local maps instead of the

global ones, which helps the mapping network to capture local regularities.

Algorithm 2 Learning of active mapping

1: Initialize t← 0 and obtain dataset D0 = {(xl,yl)}l by

running the pipeline with the rays being selected ran-

domly, instead of using the planner.

2: Train the mapping network on Dt to obtain ht with pa-

rameters θt.
3: Obtain Dt+1 = {(xl(θ

t,Y),yl)}l by running Alg. 1

and using hθt for mapping.

4: Set t ← t + 1 and repeat from line 2 until validation

error stops decreasing.

Figure 2. Architecture of the mapping network. Top: An exam-

ple input with sparse measurements, showing only the occupied

voxels. Bottom: The corresponding reconstructed dense occu-

pancy confidence after thresholding. Right: Schema of the net-

work architecture, composed from the convolutional layers (de-

noted conv), linear rectifier units (relu), and pooling (pool) and

upsampling layers (deconv).

with 5×5 kernels followed by linear rectifier units (element-

wise max{x, 0}) and, in 2 cases, by max pooling layers

with 2× 2 kernels and stride 2, see Fig. 2. In the end, there

is an fourfold upsampling layer so that the output has same

size as input. The network was implemented in MatCon-

vNet [16].

5. Planning of depth measuring rays

Planning at position l searches for a set of rays J ,

which approximately minimizes the expected logistic loss

L(Y,hθt(xl+L)) between ground truth map Y and recon-

struction obtained from sparse measurements xl+L at the

horizon L. The result of planning is the set of rays J ,

which will provide measurements for a sparse set of vox-

1541

els. This set of voxels is referred to as covered by J and

denoted as C(J). While the mapping network is trained of-

fline on the ground-truth maps, the planning have to search

the subset of rays online without any explicit knowledge of

the ground-truth occupancy Y. Since it is not clear how to

directly quantify the impact of measuring a subset of vox-

els on the reconstruction hθt(xl+L), we introduce simpli-

fied reconstruction model ĥ(J, Ŷ), which predicts the loss

based on currently available map Ŷ. This model conser-

vatively assumes that the reconstruction in covered voxels

i ∈ C(J) is correct (i.e. L
(
Yi, ĥi(J, Ŷ)

)
= 0) and recon-

struction of not covered voxels i /∈ C(J) does not change

(i.e. L
(
Yi, ĥi(J, Ŷ)

)
= L(Yi, Ŷi)). Given this reconstruc-

tion model, the expected loss simplifies to:
∑

i

L
(
Yi, ĥi(J, Ŷ)

)
=

∑

i/∈C(J)

L(Yi, Ŷi) (4)

Since the ground-truth occupancy of voxels is apriori un-

known, neither the voxel-wise loss nor the coverage are

known. We model the expected loss in voxel i as

L(Yi, Ŷi) ≈ EYi∼B(σ(Ŷi))
L(Yi, Ŷi) = H(B(σ(Ŷi))) = ǫi,

(5)

where H(B(p)) is the entropy of the Bernoulli distribution

with parameter p, denoting the probability of outcome 1
from the possible outcomes {−1, 1}. The vector of con-

catenated losses ǫi is denoted ǫ.

The length of particular rays is also unknown, therefore

coverage C(J) of voxels by particular rays cannot be de-

termined uniquely. Consequently, we introduce probability

pij that voxel i will not be covered by ray j ∈ J . This prob-

ability is estimated from currently available map Ŷ as the

product of (i) the probability that the voxels on ray j which

lie between voxel i and the sensor are unoccupied and (ii)

the probability that at least one of the following voxels or

the voxel i itself are occupied. If ray j does not intersect

voxel i, then pij = 1. The vector of probabilities pij for

ray j is denoted pj . Assuming that rays J are independent

measurements, the expected loss is modeled as ǫT
∏

j∈J pj .

The planning searches for the set J = J1 ∪ · · · ∪ JL of

subsets J1 . . . JL of depth-measuring rays for the following

L positions, which minimize the expected loss, subject to

budget constraints |J1| ≤ K, . . . |JL| ≤ K

J∗ = argmin
J

ǫ
T
∏

j∈J

pj , s.t. |J1| ≤ K, . . . |JL| ≤ K, (6)

where |Jl| denotes cardinality of the set Jl.
This is a non-convex combinatorial problem2 which

needs to be solved online repeatedly for millions of poten-

tial rays. We tried several convex approximations, however

the high-dimensional optimization has been extremely time

2In our experiments, the number of possible combinations is greater

then 102000.

consuming and the improvement with respect to the signif-

icantly faster greedy algorithm was negligible. As a conse-

quence of that, we have decided to use the greedy algorithm.

We first introduce its simplified version (Alg. 3) and derive

its properties, the significantly faster prioritized greedy al-

gorithm (Alg. 4) is explained later.

We denote the list of available rays at position l as Vl. At

the beginning, the list of all available rays is initialized as

follows V = V1 ∪ · · · ∪ VL. Alg. 3 successively builds the

set of selected rays J . In each iteration the best ray j∗ is

selected, added into J and removed from V . The position

from which the ray j∗ is chosen is denoted l∗. If the budget

K of l∗ is reached, all rays from Vl∗ are removed from V .

In order to avoid multiplication of all selected rays at

each iteration, we introduce the vector b, which keeps voxel

loss. Vector b is initialized as b = ǫ and whenever ray j is

selected, voxel losses are updated as follows b = b ⊙ pj ,

where ⊙ denotes element-wise multiplication.

Algorithm 3 Greedy planning

Require: Set of available rays V and budget K

1: J ← ∅ ⊲ Initialization

2: b← ǫ

3: while ¬(V = ∅) do

4: j∗ ← argminj∈V bTpj ⊲ Add the best ray

5: J ← J ∪ j∗

6: b← b⊙ pj ⊲ Update voxel costs

7: V ← V \ j∗ ⊲ Remove j∗ from V

8: if |Jl∗ | = K then

9: V ← V \ Vl∗ ⊲ Close position

10: end if

11: end while

12: return Set of selected rays J

The rest of this section is organized as follows: Sec-

tion 5.1 shows the upper bound for the approximation ratio

of the greedy algorithm. Section 5.2 introduces the prior-

itized greedy algorithm, which in each iteration needs to

re-evaluate the cost function bTpj only for a small fraction

of rays.

5.1. Approximation ratio of the greedy algorithm

We define the approximation ratio of a minimization al-

gorithm to be ρ = f
OPT

, where f is the cost function achieved

by the algorithm and OPT is the optimal value of the cost

function. Given ρ, we know that the algorithm provides

solution whose value is at most ρ OPT. In this section we

derive the upper bound of the approximation ratio UB(ρ) of

Algorithm 3. Figure 3 shows values of UB(ρ) for different

number of positions L.

The greedy algorithm successively selects rays that re-

duce the cost function the most. To show how cost func-

tion differs from OPT, an upper bound on the cost function

need to be derived. Let us suppose that in the beginning

1542

of an arbitrary iteration we have voxel losses given by vec-

tor b, the following lemma states that for arbitrary voxel i,
there always exists a ray j, that reduces the cost function to
∑

i bi(1−
1
K) + OPT

K , where OPT = 1T
∏K

j=1 pj = 1TpOPT

is the unknown optimum value of the cost function which is

achievable by K rays p1 . . .pK .

Lemma 5.1. If for some rays
∏K

j=1 pij = pOPT
i then

∀0≤b≤1∃j

V∑

i=1

pijbi ≤

V∑

i=1

bi(1−
1

K
) +

OPT

K
(7)

Proof: We know that there is optimal solution consisting

from K rays. Without loss of generality we assume that
∏K

j=1 pij = pOPT
i holds for first K rays, then

∀i

K∑

j=1

pij ≤ K − 1 + pOPT
i . (8)

This holds for an arbitrary positive scaling factor bi, there-

fore

∀i

K∑

j=1

pijbi ≤ (K − 1 + pOPT
i)bi. (9)

We sum up inequalities over all voxels i

V∑

i=1

K∑

j=1

pijbi ≤

V∑

i=1

(K − 1 + pOPT
i)bi. (10)

We switch sums in the left hand side of the inequality to

obtain addition of K terms as follows

V∑

i=1

pi1bi + · · ·+
V∑

i=1

piKbi ≤
V∑

i=1

(K − 1 + pOPT
i)bi (11)

Hence, we know that at least one of these K terms has to be

smaller than or equal to 1
K of the right hand side

∃j

V∑

i=1

pijbi ≤
1

K

V∑

i=1

(K − 1 + pOPT
i)bi =

=

V∑

i=1

bi(1−
1

K
) +

1

K

V∑

i=1

pOPT
i bi ≤

≤

V∑

i=1

bi(1−
1

K
) +

V∑

i=1

pOPT
i

K
= (12)

=
V∑

i=1

bi(1−
1

K
) +

OPT

K
�

Especially, if there is only one position, all optimal K rays

p1 . . .pK are either already selected or still available. This

assumption allows to derive the following upper bound on

the cost function of the greedy algorithm fK after K itera-

tions for L = 1.

Theorem 5.1. Upper bound UB(fK) ≥ fK of the greedy

algorithm after K iterations is

UB(fK) = E
1

e
+ OPT

(

1−
1

e

)

, (13)

where E =
∑V

i=1 ǫi and e is Euler number.

Proof: We prove the upper bound by complete induction.

In the beginning no ray is selected, per-voxel loss is b0i = ǫi
and the value of the cost function f0 =

∑V
i=1 b

0
i = E.

Using Lemma 5.1, we know that there exists ray j such that
∑V

i=1 pijb
0
i ≤

∑V
i=1 b

0
i (1 −

1
k) +

OPT

K , therefore we know

that

f1 =

V∑

i=1

pijb
0
i ≤

V∑

i=1

b0i

(

1−
1

K

)

+
OPT

K
=

= E

(

1−
1

K

)

+
OPT

K
. (14)

Greedy algorithm continues by updating the per-voxel loss

b1i = b0i pij . In the second iteration there are two possi-

ble cases: (i) we have either used the optimal ray in the

first iteration, then the situation is better and we know there

is (K − 1) rays which achieves optimum, or (ii) we have

not selected the optimal ray in the first iteration, therefore

we have still K rays which achieves the optimum. Since

the cost function reduction in the latter case gives the upper

bound on the cost function reduction in the former one, we

assume that there is still k optimal rays available, therefore

there exists ray j such that

f2 =
V∑

i=1

pijb
1
i ≤

V∑

i=1

b1i

(

1−
1

k

)

+
OPT

K
≤

≤ E

(

1−
1

K

)2

+
OPT

K

((

1−
1

K

)

+ 1

)

. (15)

We assume that the following holds

f t−1 ≤ E

(

1−
1

K

)t−1

+
OPT

K

t−2∑

u=0

(

1−
1

K

)u

.(16)

and prove the inequality for f t. Using the assumption (16)
and Lemma 5.1, the following inequalities hold

f
t ≤

V∑

i=1

b
t−1
i

(

1−
1

K

)

+
OPT

K
≤

≤

[

E

(

1−
1

K

)t−1

+
OPT

K

t−2∑

u=0

(

1−
1

K

)u
](

1−
1

K

)

+
OPT

K

= E

(

1−
1

K

)t

︸ ︷︷ ︸

αK
t

+OPT
1

K

t−1∑

u=0

(

1−
1

K

)u

︸ ︷︷ ︸

βK
t

(17)

1543

Since αK
t + βK

t = 1 3 and αK =
(
1− 1

K

)K
≤ 1

e , the

upper bound for cost function of the greedy algorithm in

Kth iteration is fK ≤ E 1
e + OPT

(
1− 1

e

)
�

Theorem 5.1 reveals that the approximation ratio of the

greedy algorithm ρ = fK

OPT
after K iterations has following

upper bound

ρ ≤
OPT(E

OPT

1
e
+

(
1− 1

e

)
)

OPT
≤

E

LB(OPT)e
+

(

1−
1

e

)

(18)

We can simply find LB(OPT) by considering for each voxel

the best K rays independently.

So far we have assumed that the greedy algorithm

chooses only K rays and that all rays are available in all

iterations. Since there are L positions and the greedy algo-

rithm can choose only K rays at each position, some rays

may be no longer available when choosing (K + 1)th ray.

In the worst case possible, the rays from the most promis-

ing position will become unavailable. Since we have not

chosen optimal rays we can no longer achieve OPT. Never-

theless, we can still choose from rays which achieve a new

optimum.

We introduce OPTv as the optimum achievable after clos-

ing v positions. Obviously OPT0 = OPT. Let us assume

that, when the first position is closed we cannot lose more

than R1, therefore OPT1 = OPT + R1. Without any addi-

tional assumption, R1 could be arbitrarily large. We discuss

potential assumptions later. Similarly OPT2 = OPT +R1 +
R2, and OPTv = OPT +

∑v
l=1 Rl. The following theorem

states the upper bound for fLK as a function of OPTv .

Theorem 5.2. Upper bound UB(fLK) ≥ fLK of the

greedy algorithm after LK iterations is

UB(fLK) = E
1

e
+

L−1∑

u=0

γuOPTu, (19)

where γu =
(

1− L

√
1
e

)(
L

√
1
e

)L−1−u

Proof. We start from the result (17) shown in the proof

of Theorem 5.1. Since there is LK rays achieving opti-

mum OPT0 = OPT, the cost function fK in Kth iteration is

bounded as follows

fK ≤ E

(

1−
1

LK

)K

︸ ︷︷ ︸

αLK
K

+OPT0
1

LK

K−1∑

u=0

(

1−
1

LK

)u

︸ ︷︷ ︸

βLK
K

(20)

In the (K + 1)th iteration, there are two possible cases: (i)

rays from some position l become not available and there

is K(L − 1) rays available which can achieve a new opti-

mum which is not higher than OPT1 or (ii) all rays are avail-

able and there is still LK rays which achieve OPT0 = OPT.

3βK
t = 1

K

∑t−1
u=0

(

1−

1
K

)u
= (1 − a)

∑t−1
u=0 a

u = 1 − at =

1−

(

1−

1
K

)t
= 1− αK

t for a =
(

1−

1
K

)

.

Noticing that the upper bound is increasing in OPT0 and L,

we can cover both cases by considering there is still LK
rays which achieves OPT1, therefore

fK+1 ≤ (EαLK
K + OPT0β

LK
K)(1−

1

LK
) +

OPT1

LK
=

= EαLK
K+1 + OPT0β

LK
K (1−

1

LK
) +

OPT1

LK
(21)

We can now continue up to the iteration 2K in which the

upper bound is as follows

f2K ≤ EαLK
2K + OPT0β

LK
K αLK

K + OPT1β
LK
K (22)

For (2K + 1)th iteration the situation is similar as for

(K + 1)th iteration. In order to cover both cases, we con-

sider that there is LK rays which achieves OPT2 and con-

tinue up to the 3kth iteration, which yields the following

upper bound

f3K ≤ EαLK
3K + OPT0β

LK
K αLK

2K +

+OPT1β
LK
K αLK

K + OPT2β
LK
K (23)

Finally after LK iterations the upper bound is

fLK ≤ EαLK
LK + βLK

K

L−1∑

u=0

αLK
(L−1−u)KOPTu ≤

≤ E
1

e
+

L−1∑

u=0

(

1−
L

√

1

e

)(

L

√

1

e

)L−1−u

OPTu. (24)

The last inequality stems from the fact that (αLK
K)L =

αLK
LK ≤

1
e and that αLK

K + βLK
K = 1.

Finally we derive the upper bound of the approximation

ratio ρ = fLK/OPT.

Theorem 5.3. Upper bound of the approximation ratio is

ρ ≥
E

LB(OPT)

1

e
+

L−1∑

u=0

γu

(

1 +

∑u
v=1 Rv

LB(OPT)

)

(25)

where LB(OPT) is lower bound of the OPT.

Proof:

ρ =
fLK

OPT
≤

UB(fLK)

OPT
=

E 1
e +

∑L
u=1 γuOPTu

OPT
=

=
OPT(E

OPT

1
e +

∑L
u=1 γu

OPTu

OPT
)

OPT
=

=
E

OPT

1

e
+

L∑

u=1

γu
OPT +

∑u
v=1 Rv

OPT
≤ (26)

≤
E

LB(OPT)

1

e
+

L−1∑

u=0

γu

(

1 +

∑u
v=1 Rv

LB(OPT)

)

�

1544

Figure 3. UB(ρ) as a function of OPT

E
ratios with Rv ≤

V
L

.

The approximation ratio depends on the OPT, if OPT = 0
then ρ = ∞, if OPT = E then ρ = 1. If we make an as-

sumption that each position covers only 1
L fraction of vox-

els, then Rv ≤
V
L . Figure 3 shows values of LB(ρ) for

different ratios of OPT

E for this case.

5.2. Prioritized greedy planning

In practice we observed a significant speed up of the
greedy planning (Alg. 3) by imposing prioritized search for
argminj b

Tpj . Namely, let us denote ∆k
j the decrease of

the expected reconstruction error achieved by selecting ray

j in iteration k, ∆k
j =

∑

i(b
k−1
i − bki) =

∑

i b
k−1
i (1−pij),

and show that it is non-increasing. For pij , pij′ ∈ [0, 1] and

bk−1
i ≥ 0 it follows that bk−1

i (1−pij) ≥ bk−1
i pij′(1−pij).

Summing the inequalities for all voxels i, we get

∆k
j =

∑

i

b
k−1
i (1−pij) ≥

∑

i

b
k−1
i pij′(1−pij) = ∆k+1

j (27)

for an arbitrary ray j′ selected in iteration k. Note that

∆k
j ≥ ∆k+a

j for any a ≥ 1.

Now, when we search for j maximizing ∆k
j in decreasing

order of ∆
k−aj

j , aj ≥ 1 ∀j, we can stop once ∆k
j > ∆

k−aj′

j′

for the next ray j′ because none of the remaining rays can

be better than j. Moreover, we can take advantage of the

fact that all the remaining rays including j remained sorted

when updating the priority for the next iteration. The pro-

posed planning is detailed in Alg. 4.

The number of re-evaluations of ∆j in Alg. 4 was ap-

proximately 500× smaller than in Alg. 3. Despite the sort-

ing took about a 1/10 of the computation time, the priori-

tized planning was about 30× faster and took 0.3s on aver-

age using a single-threaded implementation.

6. Experiments

Dataset All experiments were conducted on selected se-

quences from categories City and Residential from the

KITTI dataset [5]. We first brought the point clouds (cap-

tured by the Velodyne HDL-64E laser scanner) to a com-

mon reference frame using the localization data from the

inertial navigation system (OXTS RT 3003 GPS/IMU) and

Algorithm 4 Prioritized greedy planning

Require: Set of rays V = {1, . . . , N} at positions L, budget

K, voxel costs b, probability vectors pj ∀j ∈ V, mapping

from ray to position λ : V 7→ L

1: Jl ← ∅ ∀l ∈ L ⊲ No rays selected

2: ∆j ←∞ ∀j ∈ V ⊲ Force recompute

3: S ← (1, . . . , N) ⊲ Sequence of ray indices,

S(n) denotes the nth element in the sequence, S(m:n) the

subsequence from the mth to the nth element.

4: while S 6= ∅ do

5: for n ∈ (1, . . . , |S|) do

6: ∆S(n) ← bT(1− pS(n))
7: if n < |S| ∧∆S(n) ≥ ∆S(n+1) then

8: break

9: end if

10: end for

11: Sort subsequence S(1 : n) s.t. ∆S(n′) ≥ ∆S(n′+1)

12: Merge sorted subsequences S(1 : n− 1) and S(n : |S|)
13: j∗ ← S(1), l∗ ← λ(j∗)
14: Jl∗ ← Jl∗ ∪ {j

∗} ⊲ Add the best ray

15: b← b⊙ pj∗ ⊲ Update voxel costs

16: if |Jl∗ | = K then

17: S ← S \ {j : λ(j) = l∗} ⊲ Close position

18: else

19: S ← S \ {j∗} ⊲ Remove j∗ from S

20: end if

21: end while

22: return Selected rays Jl at every position l ∈ L

created the ground-truth voxel maps from these. The voxels

traced from the sensor origin towards each measured point

were updated as empty except for the voxels incident with

any of the end points which were updated as occupied for

each incident end point. The dynamic objects were mostly

removed in the process since the voxels belonging to these

objects were also many times updated as empty while mov-

ing. All maps used axis-aligned voxels of edge size 0.2m.

For generating the sparse measurements, we consider an

SSL sensor with the field of view of 120◦ horizontally and

90◦ vertically discretized in 160× 120 = 19200 directions.

At each position, we select K = 200 rays and ray-trace in

these directions until an occupied voxel is hit or the maxi-

mum distance of 48m is reached. Only the rays which end

up hitting an occupied voxel produce valid measurements,

as is the case with the time-of-flight sensors. Local maps xl

and yl contain volume of 64m × 64m × 6.4m discretized

into 320× 320× 32 voxels.

6.1. Active 3D mapping

In this experiment, we used 17 and 3 sequences from

the Residential category for training and validation, respec-

tively, and 13 sequences from the City category for testing.

We evaluate the iterative planning-learning procedure de-

scribed in Sec. 4. For learning the mapping networks, we

1545

Figure 4. ROC curves of occupancy prediction from active 3D

mapping on test sets. Left: Random denotes the global occupancy

Ŷ obtained by using hθ0 with random sparse measurements, Cou-

pled the occupancy obtained by using hθ3 with the prioritized

greedy planning. The voxels which are more than 1m from what

could possibly be measured are excluded, together with the false

positives which can be attributed to discretization error (in 1-voxel

distance from an occupied voxel). Right: Random denotes the lo-

cal occupancy maps ŷl obtained by using hθ0 , Coupled the maps

obtained by using hθ1 , and Res3D-GRU-3 denotes the reconstruc-

tion obtained by the network adapted from [3].

used learning rate α = 10−3(1/8)⌈i/10⌉ based on epoch

number i, batch size 1, and momentum 0.99. Networks

hθ0 , . . . ,hθ3 were trained for 20 epochs.

The ROC curves shown in Fig. 4 (left) are computed us-

ing ground-truth maps Y and predicted global occupancy

maps Ŷ. The performance of the hθ3 network (denoted

Coupled) significantly outperforms the hθ3 network (Ran-

dom), which shows the benefit of the proposed iterative

planning-mapping procedure. Examples of reconstructed

global occupancy maps are shown in Fig. 5. Note that the

valid measurements covered around 3% of the input voxels.

6.2. Comparison to a recurrent image-based archi-
tecture

We provide a comparison with the image-based recon-

struction method of Choy et al. [3]. Namely, we modify

their residual Res3D-GRU-3 network to use sparse depth

maps of size 160 × 120 instead of RGB images. The sen-

sor pose corresponding to the last received depth map was

used for reconstruction. The number of views were fixed to

5, with K = 200 randomly selected depth-measuring rays

in each image. For this experiment, we used 20 sequences

from the Residential category—18 for training, 1 for valida-

tion and 1 for testing. Since the Res3D-GRU-3 architecture

is not suited for high-dimensional outputs due to its high

memory requirements, we limit the batch size to 1 and the

size of the maps to 128 × 128 × 32, which corresponds to

16 × 16 × 4 recurrent units. Our mapping network was

trained and tested on voxel maps instead of depth images.

The corresponding ROC curves, computed from local

maps yl and ŷl, are shown in Fig. 4 (right). Both hθ0

and hθ1 networks outperforms the Res3D-GRU-3 network.

trees cars

Figure 5. Examples of global map reconstruction. Top: Sparse

measurement maps X. Middle: Reconstructed occupancy maps

Ŷ in form of isosurface. Bottom: Ground-truth maps Y. The

black line denotes trajectory of the car.

We attribute this result mostly to the fact that our method is

implicitly provided the known trajectory, while the Res3D-

GRU-3 network is not. Another reason may be the ray-voxel

mapping which is also known implicitly in our case, com-

pared to [3].

7. Conclusions

We have proposed a computationally tractable approach

for the very high-dimensional active perception task. The

proposed 3D-reconstruction CNN outperforms a state-of-

the-art approach by 20% in recall, and it is shown that when

learning is coupled with planning, recall increases by ad-

ditional 8% on the same false positive rate. The proposed

prioritized greedy planning algorithm seems to be a promis-

ing direction with respect to on-board reactive control since

it is about 30× faster and requires only 1/500 of ray evalu-

ations compared to a naı̈ve greedy solution.

Acknowledgment

The research leading to these results has received fund-

ing from the European Union under grant agreement FP7-

ICT-609763 TRADR and No. 692455 Enable-S3, from the

Czech Science Foundation under Project 17-08842S, and

from the Grant Agency of the CTU in Prague under Project

SGS16/161/OHK3/2T/13.

1546

References

[1] E. Ackerman. Quanergy announces $250 solid-state LIDAR

for cars, robots, and more. In IEEE Spectrum, January 2016.

1

[2] A. Andreopoulos, S. Hasler, H. Wersing, H. Janssen, J. K.

Tsotsos, and E. Körner. Active 3D object localization using a

humanoid robot. IEEE Transactions on Robotics, 27(1):47–

64, 2011. 2

[3] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese. 3D-

R2N2: A unified approach for single and multi-view 3D

object reconstruction. In Computer Vision – ECCV 2016:

14th European Conference on, pages 628–644, Cham, 2016.

Springer International Publishing. 1, 2, 8

[4] M. Firman, O. M. Aodha, S. Julier, and G. J. Brostow. Struc-

tured prediction of unobserved voxels from a single depth

image. In 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 5431–5440, June 2016.

2

[5] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision

meets robotics: The KITTI dataset. International Journal

of Robotics Research, 32(11):1231–1237, Sept. 2013. 1, 7

[6] D. Jayaraman and K. Grauman. Look-ahead before you leap:

End-to-end active recognition by forecasting the effect of

motion. In Computer Vision – ECCV 2016: 14th European

Conference on, pages 489–505. Springer International Pub-

lishing, Cham, 2016. 1, 2

[7] A. K. Mishra, Y. Aloimonos, L. F. Cheong, and A. Kas-

sim. Active visual segmentation. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 34(4):639–653,

April 2012. 1

[8] A. Monszpart, N. Mellado, G. J. Brostow, and N. J. Mitra.

RAPter: Rebuilding man-made scenes with regular arrange-

ments of planes. ACM Trans. Graph., 34(4):103:1–103:12,

July 2015. 2

[9] D. T. Nguyen, B. S. Hua, M. K. Tran, Q. H. Pham, and S. K.

Yeung. A field model for repairing 3d shapes. In 2016

IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), pages 5676–5684, June 2016. 2

[10] C. R. Qi, H. Su, M. Niener, A. Dai, M. Yan, and L. J. Guibas.

Volumetric and multi-view CNNs for object classification on

3D data. In 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 5648–5656, June 2016.

2

[11] J. Rock, T. Gupta, J. Thorsen, J. Gwak, D. Shin, and

D. Hoiem. Completing 3d object shape from one depth im-

age. In 2015 IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), pages 2484–2493, June 2015. 2

[12] H. Seifa and X. Hub. Autonomous driving in the iCity—

HD maps as a key challenge of the automotive industry. Au-

tonomous Robots, 2(2):159–162, 2016. 1

[13] C.-H. Shen, H. Fu, K. Chen, and S.-M. Hu. Structure re-

covery by part assembly. ACM Trans. Graph., 31(6):180:1–

180:11, Nov. 2012. 2

[14] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller. Multi-

view convolutional neural networks for 3D shape recogni-

tion. In 2015 IEEE International Conference on Computer

Vision (ICCV), pages 945–953, Dec 2015. 2

[15] M. Sung, V. G. Kim, R. Angst, and L. Guibas. Data-driven

structural priors for shape completion. ACM Trans. Graph.,

34(6):175:1–175:11, Oct. 2015. 2

[16] A. Vedaldi and K. Lenc. Matconvnet: Convolutional neural

networks for matlab. In Proceedings of the 23rd ACM In-

ternational Conference on Multimedia, MM ’15, pages 689–

692, New York, NY, USA, 2015. ACM. 3

[17] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and

J. Xiao. 3D ShapeNets: A deep representation for volumetric

shapes. In 2015 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 1912–1920, June 2015.

2

[18] B. Zheng, Y. Zhao, J. C. Yu, K. Ikeuchi, and S. C. Zhu. Be-

yond point clouds: Scene understanding by reasoning geom-

etry and physics. In 2013 IEEE Conference on Computer Vi-

sion and Pattern Recognition, pages 3127–3134, June 2013.

2

1547

