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Abstract

General human action recognition requires understand-

ing of various visual cues. In this paper, we propose a net-

work architecture that computes and integrates the most

important visual cues for action recognition: pose, mo-

tion, and the raw images. For the integration, we intro-

duce a Markov chain model which adds cues successively.

The resulting approach is efficient and applicable to action

classification as well as to spatial and temporal action lo-

calization. The two contributions clearly improve the per-

formance over respective baselines. The overall approach

achieves state-of-the-art action classification performance

on HMDB51, J-HMDB and NTU RGB+D datasets. More-

over, it yields state-of-the-art spatio-temporal action local-

ization results on UCF101 and J-HMDB.

1. Introduction

Human action recognition is a complex task in computer

vision, due to the variety of possible actions is large and

there are multiple visual cues that play an important role. In

contrast to object recognition, action recognition involves

not only the detection of one or multiple persons, but also

the awareness of other objects, potentially involved in the

action, such as the pose of the person, and their motion.

Actions can span various time intervals, making good use

of videos and their temporal context is a prerequisite for

solving the task to its full extent [42, 41].

The success of convolutional networks in recognition has

also influenced action recognition. Due to the importance of

multiple visual cues, as shown by Jhuang et al. [13], multi-

stream architectures have been most popular. This trend was

initiated by Simonyan and Zisserman [36], who proposed a

simple fusion of the action class scores obtained with two

separate convolutional networks, where one was trained on

raw images and the other on optical flow. The relative suc-

cess of this strategy shows that deep networks for action

Figure 1. The chained multi-stream 3D-CNN sequentially refines

action class labels by analyzing motion and pose cues. Pose is

represented by human body parts detected by a deep network. The

spatio-temporal CNN can capture the temporal dynamics of pose.

Additional losses on YPose and YOF are used for training. The

final output of the network YRGB is provided at the end of the

chain.

recognition cannot directly infer the relevant motion cues

from the raw images, although, in principle, the network

could learn to compute such cues.

In this paper, we propose a three-stream architecture1

that also includes pose, see Figure 1. Existing approaches

model the temporal dynamics of human postures with hand-

crafted features. We rather propose to compute the po-

sition of human body parts with a fast convolutional net-

work. Moreover, we use a network architecture with spatio-

temporal convolutions [41]. This combination can capture

temporal dynamics of body parts over time, which is valu-

able to improve action recognition performance, as we show

in dedicated experiments. The pose network also yields the

spatial localization of the persons, which allows us to apply

the approach to spatial action localization in a straightfor-

ward manner.

1https://lmb.informatik.uni-freiburg.de/

projects/action_chain/
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The second contribution is on the combination of the

multiple streams, as also illustrated in Figure 1. The com-

bination is typically done by summation of scores, by a lin-

ear classifier, or by early or late concatenation of features

within the network. In this paper, we propose the integra-

tion of different modalities via a Markov chain, which leads

to a sequential refinement of action labels. We show that

such sequential refinement is beneficial over independent

training of streams. At the same time, the sequential chain

imposes an implicit regularization. This makes the archi-

tecture more robust to over-fitting – a major concern when

jointly training very large networks. Experiments on multi-

ple benchmarks consistently show the benefit of the sequen-

tial refinement approach over alternative fusion strategies.

Since actions may span different temporal resolutions,

we analyze videos at multiple temporal scales. We demon-

strate that combining multiple temporal granularity levels

improves the capability of recognizing different actions. In

contrast to some other state-of-the-art strategies to analyze

videos over longer time spans, e.g., temporal segmenta-

tion networks [47], the architecture still allows the tempo-

ral localization of actions by providing actionness scores of

frames using a sliding window over video. We demonstrate

this flexibility by applying the approach also to temporal

and spatio-temporal action detection. Compared to previ-

ous spatio-temporal action localization methods, which are

typically based on region proposals and action tubes, the

pose network in our approach directly provides an accurate

person localization at no additional computational costs.

Therefore, it consistently outperforms the previous methods

in terms of speed and mean average precision.

2. Related Work

Feature based approaches. Many traditional works in

the field of action recognition focused on designing features

to discriminate action classes [19, 44, 5, 18, 17].

These features were encoded with high order encodings,

e.g., bag of words (BoW) [38] or Fisher vector based en-

codings [33], to produce a global representation for video

and to train a classifier on the action labels. Recent research

showed that most of these approaches are not only compu-

tationally expensive, but they also fail on capturing context

and high-level information.

CNN based approaches. Deep learning has enabled

the replacement of hand-crafted features by learned fea-

tures, and the learning of whole tasks end-to-end. Sev-

eral works employed deep architectures for classification

[26, 41, 45, 34]. Thanks to their hiearchical feature rep-

resentation, deep networks learn to capture localized fea-

tures as well as context cues and can exploit high-level in-

formation from large scale video datasets. Baccouche et

al. [2] firstly used a 3D CNN to learn spatio-temporal fea-

tures from video and in the next step they employed an

LSTM to classify video sequences. More recently, several

CNN based works presented efficient deep models for ac-

tion recognition [7, 31, 41]. Tran et al. [41] employed a 3D

architecture to learn spatio-temporal features from videos.

Fusion of multiple modalities. Zisserman et al. [36]

proposed a two-stream CNN to capture the complementary

information from appearance and motion, each modality in

an independent stream. Feichtenhofer et al. [9] investigated

the optimal position within a convolution network in detail

to combine the separate streams. Park et al. [30] proposed

a gated fusion approach. In a similar spirit, Wang et al. [50]

presented an adaptive fusion approach, which uses two reg-

ularization terms to learn fusion weights. In addition to op-

tical flow, some works made use of other modalities like

audio [50], warped flow [47], and object information [12]

to capture complementary information for video classifica-

tion. In the present work, we introduce a new, flexible fu-

sion technique for early or late fusion via a Markov chain

and show that it outperforms previous fusion methods.

Pose feature based methods. Temporal dynamics of

body parts over time provides strong information on the

performing action. Thus, this information has been em-

ployed for action recognition and localization in several

works [4, 21, 43, 39]. Cheron et al. [4] used pose infor-

mation to extract high-level features from appearance and

optical flow. They showed that using pose information for

video classification is highly effective. Wang et al. [43] used

data mining techniques to obtain a representation for each

video and finally, by using a bag-of-words model to classify

videos. In the present work, we compute the human body

layout efficiently with a deep network and learn the relevant

spatio-temporal pose features within one of the streams of

our action classification network.

3. Inputs to the Network

We rely on three input cues: the raw RGB images, opti-

cal flow, and human pose in the form of human body part

segmentation. All inputs are provided as spatio-temporal

inputs covering multiple frames.

3.1. Optical Flow

We compute the optical flow with the method from

Zach et al. [52], which is a reliable variational method that

runs sufficiently fast. We convert the x-component and y-

component of the optical flow to a 3 channel RGB image by

stacking components and magnitude of them [31]. The flow

and magnitude values in the image are multiplied by 16 and

quantized into the [0,255] interval [20, 31, 46, 47].

3.2. Body Part Segmentation

Encoder-decoder architectures with an up-convolutional

part have been used successfully for semantic segmentation

tasks [25, 24, 32, 3, 29], depth estimation [22] and optical
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Figure 2. Human body part segmentation architecture. Convolutions are shown in green, pooling in blue, feature map dropout in brown,

up-convolutional layers in red and softmax in yellow.

flow estimation [8]. For this work, we make use of Fast-Net

[29], a network for human body part segmentation, which

will provide our action recognition network with body pose

information. Figure 2 illustrates the architecture of Fast-

Net. The encoder part of the network is initialized with the

VGG network [37]. Skip connections from the encoder to

the decoder part ensure the reconstruction of details in the

output up to the original input resolution.

We trained the Fast-Net architecture on the J-HMDB

[13] and the MPII [1] action recognition datasets. J-HMDB

provides body part segmentation masks and joint locations,

while MPII provides only joint locations. To make body

part masks compatible across datasets, we apply the fol-

lowing methodology, which only requires annotation for the

joint locations. First, we derive a polygon for the torso from

the joint locations around that area. Secondly, we approxi-

mate the other parts by ellipses scaled consistently based on

the torso area and the distance between the respective joints;

see second column of Fig. 3. We convert the body part seg-

mentation into a 3 channel RGB image, mapping each label

to a correspondent pre-defined RGB value.

To the best of our knowledge, we are the first who trained

a convolutional network on body part segmentation for the

purpose of action recognition. Figure 3 shows exemplary

results of the body part segmentation technique on J-HMDB

and MPII datasets. Clearly, the network provides good ac-

curacy on part segmentation and is capable of handling im-

ages with multiple instances. The pose estimation network

has a resolution of 150×150 and runs at 33 fps.

4. Action Recognition Network

4.1. Multi-stream Fusion with a Markov Chain

To integrate information from the different inputs we rely

on the model of a multi-stream architecture [36], i.e., each

input cue is fed to a separate convolutional network stream

that is trained on action classification. The innovation in our

approach is the way we combine these streams. In contrast

to the previous works, we combine features from the differ-

ent streams sequentially. Starting with the human body part

stream, we refine the evidence for an action class with the

optical flow stream, and finally apply a refinement by the

Figure 3. Qualitative results on J-HMDB and MPII datasets (task

with 15 body parts). First column: Input image. Second col-

umn: Ground truth. Third column: Result predicted with Fast-

Net. First two rows correspond to results on J-HMDB and the last

ones on MPII.

RGB stream.

We use the assumption that the class predictions are con-

ditionally independent due to the different input modalities.

Consequently, the joint probability over all input streams

factorizes into the conditional probabilities over the sepa-

rate input streams.

In a Markov chain, given a sequence of inputs X =
{X1, X2, ..., XS}, we wish to predict the output sequence

Y = {Y1, Y2, ..., YS} such that P (Y |X) is maximized. Due

to the Markov property, P (Y |X) can be decomposed:
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Figure 4. Baseline fusion architecture (left) and the proposed ap-

proach (right). In the chained architecture, there is a separate loss

function for each stream. The final class label is obtained at the

end of the chain (rightmost prediction).

P (Y |X) = P (Y1|X)

S�

s=2

P (Ys|X,Y1, . . . , Ys−1) (1)

For the state s ∈ {1, . . . , S}, we denote by hs the hidden

state of that stream. We use deep networks to model the

likelihood in (1):

hs = f([hs−1, 3DCNN(Xs), (Y1, . . . , Ys−1)])

P (Ys|X,Y<s) = softmax(Nets(hs)),
(2)

where f is a non-linearity unit (ReLU), hs−1 denotes the

hidden state from the previous stream, and ys is the predic-

tion of stream s. For the 3DCNN(·), we use the convo-

lutional part and first fully connected layer of the network

presented in Figure 5 to encapsulate the information in the

input modality, and Nets is the fully connected part in Fig-

ure 5.

At each fusion stage, we concatenate the output of the

function 3DCNN(·) with the hidden state and the out-

puts from the previous stream and apply the non-linearity

f before feeding them to Nets. Finally, at the out-

put part, we use Nets to predict action labels from hs.

With the softmax(·) function we convert these scores into

(pseudo-)probabilities.

Using the above notation, we consider input modalities

as X = {Xpose, XOF , XRGB}, and Xs = {xt}
T
t=1

, where

xt is the t-th frame in Xs, and T is the total number of

frames in Xs. At the stage s = 1, by considering X1 =
Xpose we start with an initial hidden state and obtain an

initial prediction (see Figure 4-right):

h1 = 3DCNN(Xpose)

P (Y1|X) = softmax(Net1(h1))
(3)

At each subsequent stage s � 2, we obtain a refined predic-

tion ys by combining the hidden state and the predictions

from the previous stage.

h2 = f([h1, 3DCNN(XOF ), (Y1)])

P (Y2|X,Y<2) = softmax(Net2(h2))

h3 = f([h2, 3DCNN(XRGB), (Y1, Y2)])

P (Y3|X,Y<3) = softmax(Net3(h3))

(4)

In the proposed model, at each stage, the next prediction

is made conditioned on all previous predictions and the new

input. Therefore, when training the network, the prediction

of the output class label does not only depend on the input,

but also on the previous state. Thus, the network in that

stream will learn complementary features to refine the class

labels from the previous streams. With this chaining and

joint training, the information at the previous stages serve

as the present belief for the predictions at the current stage,

as shown in Figure 4-right. This sequential improvement

of the class label enables the combination of multiple cues

within a large network, while keeping the risk of over-fitting

low.

This is in contrast to the fusion approaches that com-

bine features from different, independently trained streams.

In such a case, the different streams are not enforced to

learn complementary features. In the other extreme, ap-

proaches that train all streams jointly but not sequentially,

are more prone to over-fitting, because the network is very

large, and, in such case, lacks the regularization via the sep-

arate streams and their additional losses.

It should be expected that the ordering of the sequence

plays a role for the final performance. We compared dif-

ferent ordering options in our experiments and report them

in the following section. The ordering that starts with the

pose as input and ends with the RGB image yielded the best

results.

It is worth noting that the concept of sequential fusion

could be applied to any layer of the network. Here we

placed the fusion after the first fully-connected layer, but

the fusion could also be applied to the earlier convolutional

layers.

4.2. Network Configuration

In all streams, we use the C3D architecture [41] as the

base architecture, which has 17.5M parameters. The net-

work has 8 three-dimensional convolution layers with ker-

nel size of 3×3×3 and stride 1, 5 three-dimensional pooling

layers with kernel size of 2×2×2 and stride 2 and two fully

connected layers followed by a softmax; see Figure 5. Each

stream is connected with the next stream via layer FC6; see

Figure 4-right. Each stream takes 16 frames as input.

4.3. Training

The network weights are learned using mini-batch

stochastic gradient descent (SGD) with a momentum of
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Figure 5. Base architecture used in each stream of the action recognition network. We define the convolutional part and the first fully

connected layer as a 3DCNN and the remaining fully connected layers as Nets.

0.9 and weight decay of 5e−4. We jointly optimize the

whole network without truncating gradients and update the

weights of each stream based on the full gradient includ-

ing the contribution from the following stream. We initial-

ize the learning rate with 1e−4 and decrease it by a factor

of 10 every 2k for J-HMDB, 20k for UCF101 and NTU,

and at multiple steps for HMDB51. The maximum number

of iterations was 20k for J-HMDB, 40k for HMDB51 and

60k for the UCF101 and NTU datasets. We initialize the

weights of all streams with an RGB network pre-trained on

the large-scale Sports-1M dataset [15] except flow streams

of J-HMDB and HMDB51 datasets which we initialize with

the weights of UCF101 flow stream finetuned on Sports-1M

model.

We split each video into clips of 16 frames with an over-

lap of 8 frames and feed each clip individually into the net-

work stream with size of 16× 112× 112. We apply corner

cropping as a form of data augmentation to the training data.

Corner cropping extracts regions from the corners and the

center of the image. It helps to prevent the network from

bias towards the center area of the input. Finally, we resize

these cropped regions to the size of 112× 112. In each iter-

ation, all streams take the same clip from the video with the

same augmentation but with different modalities as input.

We used Caffe [14] and an NVIDIA Titan X GPU to run

our experiments. The training time for the J-HMDB dataset

was ∼ 10 hours for the full network.

4.4. Temporal Processing of the Whole Video

At test time, we feed the architecture with a temporal

window of 16 frames. The stride over the video is 8. Each

set of inputs is randomly selected for cropping operations,

which are 4 corners and 1 center crop for the original im-

age and their horizontal flipping counterpart. We extract

scores before the softmax normalization in the last stream

(Y RGB).

In case of action classification, the final score of a video

is calculated by taking the average of scores over all tem-

poral windows across a video and 10 crop scores per clip.

Apart from averaging, we also tested a multi-resolution ap-

proach, which we call multi-granular (MG), where we

trained separate networks for three different temporal reso-

lutions. These are assembled as (1) 16 consecutive frames,

(2) 16 frames from a temporal window of 32 frames by a

sample rate of 2, and (3) 16 frames sampled randomly from

the entire video. For the final score, we take the average

over the scores produced by these temporal resolution net-

works. This approach extends the temporal context that the

network can see, which can be useful for more complex ac-

tions with longer duration.

In case of temporal action detection, we localize the ac-

tion in time by thresholding the score provided for each

frame. Clearly, the MG approach is not applicable here.

In addition to the action score, also the human body part

network helps in temporal localization: we do not detect an

action as long as no human is detected. More details on the

spatio-temporal action detection are provided in the experi-

mental section and in the supplemental material.

5. Experiments

5.1. Datasets

UCF-101 [40] contains more than 2 million frames in

more than 13, 000 videos, which are divided into 101 hu-

man action classes. The dataset is split into three folds

and each split contains about 8000 videos for training.

The UCF101 dataset also comes with a subset for spatio-

temporal action detection.

HMDB51 [16] contains 6766 videos divided into 51 ac-

tion classes, each with at least 101 samples. The evaluation

follows the same protocol used for UCF-101.

J-HMDB contains a subset of videos from the HMDB

dataset, for which it provides additional annotation, in par-

ticular optical flow and joint localization [13]. Thus, it is

well-suited for evaluating the contribution of optical flow,

body part segmentation, and the fusion of all cues via a

Markov chain. The dataset comprises 21 human actions.

The complete dataset has 928 clips and 31838 frames.

There are 3 folds for training and testing for this dataset.

The videos in J-HMDB are trimmed and come with bound-

ing boxes. Thus, it can be used also as a benchmark for

spatial action localization.
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Streams Variant UCF101 HMDB J-HMDB

1

RGB 84.2% 53.3% 60.8%

OF 79.6% 45.2% 61.9%

Pose 56.9% 36.0% 45.5%

Pose (GT) - - 56.8%

RGB+OF

baseline 87.1% 55.6% 62.7%

chained 88.9% 61.7% 72.8%

chained+MG - 66.0% -

3 w/o GT

baseline 89.1% 57.5% 70.2%

chained 90.4% 62.1% 79.1%

chained+MG 91.3% 71.1% -

3 with GT
baseline - - 72.0%

chained - - 83.2%

Table 1. The value of different cues and their integration for ac-

tion recognition on the UCF101, HMDB51, and J-HMDB datasets

(split 1). Adding optical flow and pose is always beneficial. In-

tegration via the proposed Markov chain clearly outperforms the

baseline fusion approach. In all cases, the accuracy achieved with

estimated optical flow and body parts almost reaches the upper

bound performance when providing ground truth values for those

inputs.

NTU RGB+D is a recent action recognition dataset that

is quite large and provides depth and pose ground truth

[35]. It contains more than 56000 sequences and 4 million

frames. NTU provides 60 action classes and 3D coordinates

for 25 joints. Additionally, the high intra-class variations

make NTU one of the most challenging datasets.

5.2. Action Classification

Table 1 shows that fusion with the sequential Markov

chain model outperforms the baseline fusion consistently

across all datasets. The baseline fusion is shown in Figure 4

and can be considered a strong baseline. It consists of fus-

ing the multiple modalities through feature concatenation

followed by a set of fully connected layers. The network is

trained jointly.

Adding pose leads to a substantial improvement over the

two-stream version. This confirms that pose plays an impor-

tant role as complementary modality for action recognition

tasks. Again, the Markov chain fusion is advantageous with

a large margin.

For the J-HMDB dataset, ground truth for optical flow

and pose is available and can be provided to the method.

While not being relevant in practice, running the recogni-

tion with this ground truth shows on how much performance

is lost due to erroneous optical flow and pose estimates. Sur-

prisingly, the difference between the results is rather small,

showing that the network does not suffer much from imper-

fect estimates. This conclusion can be drawn independently

of the fusion method.

Finally, the temporal multi-granularity fusion (MG) fur-

ther improves results. Especially on HMDB51, there is a

large benefit.

Datasets

Methods UCF101 HMDB51 J-HMDB

TS Fusion [9] 92.5% 65.4% -

LTC [42] 91.7% 64.8% -

Two-stream [36] 88.0% 59.4% -

TSN [47] 94.2% 69.4% -

CPD [28] 92.3% 66.2% -

Sym. FV+SVM [6] 90.6% 67.8% -

Multi-Granular [20] 90.8% 63.6% -

M-fusion [30] 89.1% 54.9% -

KVMF [53] 93.1% 63.3% -

P-CNN [4] - - 61.1%

Action tubes [10] - - 62.5%

TS R-CNN [31] - - 70.5%

MR-TS R-CNN [31] - - 71.1%

Ours (chained) 91.1% 69.7% 76.1%

Table 2. Comparison to the state of the art on UCF101, HMDB51,

and J-HMDB datasets (over all three splits).

Method Cross Subject %

Deep LSTM [35] 60.7%

P-LSTM [35] 62.93%

HOG2[27] 32.2%

FTP DS [11] 60.23%

ST-LSTM [23] 69.2%

Ours (Pose) 67.8%

Ours (RGB+OF+Pose - Baseline) 76.9%

Ours (RGB+OF+Pose - Chained) 80.8%

Table 3. Comparison to literature on the NTU RGB+D benchmark.

5.2.1 Comparison with the state-of-the-art

Table 2 compares the proposed network to the state of the

art in action classification. In contrast to Table 1, the com-

parison does not show the direct influence of single con-

tributions anymore, since this table compares whole sys-

tems that are based on quite different components. Many of

these systems also use other features extraction approaches,

such as improved dense trajectories (IDT), which generally

have a positive influence on the results, but also make the

system more complicated and harder to control. Our net-

work outperforms the state of the art on J-HMDB, NTU,

and HMDB51. Also, on UCF101 dataset our approach is

on par with the current state of the art while it does not

rely on any additional hand-crafted features. In two stream

case (RGB+OF), if we replace the 3DCNN network by the

TSN approach [47], we obtain a classification accuracy of

94.05% on UCF101 (over 3 splits), which is the state of the

art also on this dataset. However, the TSN approach does

not allow for action detection anymore.

Finally, we ran the network on the recent NTU RGB+D

dataset, which is larger and more challenging than the pre-

vious datasets. The dataset is popular for the evaluation of
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Dataset OPR ORP RPO ROP PRO POR

HMDB51 59.8% 57.3% 54.8% 54.1% 56.4% 60.0%

UCF101 86.8% 86.2% 84.3% 84.7% 85.1% 87.1%

Table 4. Impact of chain order on the performance (clip accuracy)

on UCF101 and HMDB51 datasets (split1). ”O” = Optical flow,

”P” = Pose and ”R” = RGB.

Dataset Y Pose Y OF Y RGB

UCF101 55.7% 83.0% 90.4%

HMDB51 40.9% 56.4% 62.1%

J-HMDB 47.1% 65.3% 79.1%

Table 5. Sequential improvement of classification accuracy on

UCF101, HMDB51 and J-HMDB datasets (Split1) by adding

modalities to the chained network.

methods that are based on human body pose. Clearly, the re-

sult of our network, shown in Table 3, compares favorably

to the existing methods. As a result, the used pose estima-

tion network is competitive with pose estimates using depth

images and that our way to integrate this information with

the raw images and optical flow is advantageous.

5.2.2 Ordering of modalities in the Markov chain.

Table 4 shows an analysis on how the order of the modalities

affects the final classification accuracy. Clearly, the order-

ing has an effect. The proposed ordering starting with the

pose and then adding the optical flow and the RGB images

performed best, but there are alternative orders that do not

perform much worse.

Table 5 quantifies the improvement in accuracy when

adding a modality. Clearly, each additional modality im-

proves the results.

5.2.3 Fusion location

In principle the chained fusion can be applied to any layer in

the network. We studied the effect of this choice. In contrast

to the large scale evaluation in Feichtenhofer et al. [9], we

tested only two locations: FC6 and FC7. Table 6 shows

a clear difference only on the J-HMDB dataset. There it

seems that an earlier fusion, at a level where the features

are not too abstract yet, is advantageous. This is similar to

the outcome of the study by Feichtenhofer et al. [9], where

the last convolutional layer worked best.

5.2.4 Effect of clip length

We analyzed the effect of the size of the temporal window

on the action recognition performance. Larger windows

clearly improve the accuracy on all datasets; see Table 7.

For the J-HMDB dataset (RGB modality) we use a tempo-

ral window ranging from 4 to 16 frames every 4 frames.

The highest accuracy is obtained with a 16 frames clip size.

Based on the J-HMDB minimum video size, 16 is the high-

est possible time frame to be explored. We also tested mul-

Fusion Location UCF101 HMDB51 J-HMDB

FC7 89.8% 61.3% 73.9%

FC6 89.6% 62.1% 79.1%

Table 6. Classification performance for different fusion locations

on UCF101, HMDB51 and J-HMDB datasets (split1).

Dataset Clip length Accuracy

J-HMDB (RGB)

4 44.8%

8 49.6%

12 58.7%

16 60.8%

NTU RGB+D (Pose)
16 61.6%

32 67.8%

Table 7. Effect of the temporal window size. Using more frames

as input to the network consistently increases classification perfor-

mance.

tiple temporal resolutions for the NTU dataset (pose modal-

ity). Again, we obtained the best results for the network

with the larger clip length as input.

The conducted experiments confirm that increasing the

length of the clip, we decrease the chance of getting unre-

lated parts of an action in a video. In addition, with longer

sequences, 3D convolutions can better exploit their ability

to capture abstract spatio-temporal features for recognizing

actions.

5.3. Action Detection

To demonstrate the generality of our approach, we show

also results on action detection on UCF101 and J-HMDB.

Many of the top performing methods for action classifica-

tion are not applicable to action detection, because they in-

tegrate information over time in a complex manner, are too

slow, or are unable to spatially localize the action.

This is different for our approach, which is efficient and

can be run in a sliding window manner over time and pro-

vides good spatial localization via the human body part seg-

mentation. In order to create temporally consistent spatial

detections, we link action bounding boxes over time to pro-

duce action tube [10]; see the supplemental material for de-

tails. We use the frame level action classification scores to

make predictions at the tube level. Figure 6 schematically

outlines the detection procedure.

We also present a set of qualitative action detection ex-

periments for the UCF and J-HMDB datasets. Figure 7

shows several examples where we can robustly localize the

action, even when unusual pose, illumination, viewpoints

and motion blur are presented. Additional results exploring

failure cases are provided in supplementary material.

Following recent works on action detection [10, 48, 31],

we report video-AP. A detection is considered correct if the

intersection over union (IoU) with the ground-truth is above

a threshold δ and the action label is predicted correctly.

The IoU between two tubes is defined as the IoU over the

temporal domain, multiplied by the average of the IoU be-
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Figure 6. Scheme for spatio-temporal action detection. The

chained network provides action class scores and body part seg-

mentations per frame. From these we compute action tubes and

their actionness scores; see the supplemental material for details.

Figure 7. Qualitative results on the action detection task. The first

two rows correspond to detections on UCF101, the last ones on

J-HMDB. Ground truth bounding boxes are shown in green and

detections in red. Our spatial localization is accurate and robust to

unusual pose.

tween boxes averaged over all overlapping frames. Video-

AP measures the area under the precision-recall curve of the

action tube predictions.

Table 8 and Table 9 show the video mAP results on spa-

tial and spatio-temporal action detection with different IoU

thresholds on J-HMDB and UCF101 (split1) datasets re-

spectively. Although we did not optimize our approach for

action detection, we obtain state-of-the-art results on both

J-HMDB

IoU threshold (δ) 0.1 0.2 0.3 0.4 0.5

Actionness [46] - - - - 56.4

ActionTubes [10] - - - - 53.3

Weinzaepfel et al. [48] - 63.1 63.5 62.2 60.7

Peng et al. [31] - 74.3 - - 73.1

Ours 78.81 78.20 77.12 75.05 73.47

Table 8. Spatial action detection results (Video mAP) on the J-

HMDB dataset. Across all IoU thresholds, our model outperforms

the state of the art.

UCF101

IoU threshold (δ) 0.05 0.1 0.2 0.3

Weinzaepfel et al. [48] 54.28 51.68 46.77 37.82

Yu et al. [51] 42.80 - - -

Peng et al. [31] 54.46 50.39 42.27 32.70

Weinzaepfel et al. [49] 62.8 - 45.4 -

Ours 65.22 59.52 47.61 38.00

Table 9. Spatio-temporal action detection results (Video mAP) on

UCF101 dataset (split1). Across all IoU thresholds, our model

outperforms the state of the art.

datasets. Moreover, the approach is fast: spatial detection

runs at a rate of 31 fps and spatio-temporal detection with

10 fps. Compared to the recent works [10, 49, 31, 51], our

detection framework has two desirable properties: (1) the

pose network directly provides a single detection box per

person, which causes a large speed-up; (2) the classification

takes advantage of three modalities and the chained fusion,

which yields highly accurate per-frame scores.

6. Conclusions

We have proposed a network architecture that integrates

multiple cues sequentially via a Markov chain model. We

have shown that this sequential fusion clearly outperforms

other ways of fusion, because it can consider the mutual

dependencies of cues during training while avoiding over-

fitting due to very large network models. Our approach pro-

vides state-of-the-art performance on all four challenging

action classification datasets UCF101, HMDB51, J-HMDB

and NTU RGB+D while not using any additional hand-

crafted features. Moreover, we have demonstrated the value

of a reliable pose representation estimated via a fast convo-

lutional network. Finally, we have shown that the approach

generalizes also to spatial and spatio-temporal action detec-

tion, where we obtained state-of-the-art results as well.
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[4] G. Chéron, I. Laptev, and C. Schmid. P-CNN: Pose-based

CNN Features for Action Recognition. In ICCV, 2015. 2, 6

[5] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In Proceedings of the 2005 IEEE Com-

puter Society Conference on Computer Vision and Pattern

Recognition (CVPR’05) - Volume 1 - Volume 01, CVPR ’05,

pages 886–893, Washington, DC, USA, 2005. IEEE Com-

puter Society. 2

[6] C. R. de Souza, A. Gaidon, E. Vig, and A. M. L. Peña.

Sympathy for the details: Dense trajectories and hybrid

classification architectures for action recognition. CoRR,

abs/1608.07138, 2016. 6

[7] A. Diba, A. M. Pazandeh, and L. V. Gool. Efficient two-

stream motion and appearance 3d cnns for video classifica-

tion. CoRR, abs/1608.08851, 2016. 2

[8] A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazrba,
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