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Abstract

The success of various applications including robotics,

digital content creation, and visualization demand a struc-

tured and abstract representation of the 3D world from lim-

ited sensor data. Inspired by the nature of human percep-

tion of 3D shapes as a collection of simple parts, we explore

such an abstract shape representation based on primitives.

Given a single depth image of an object, we present 3D-

PRNN, a generative recurrent neural network that synthe-

sizes multiple plausible shapes composed of a set of prim-

itives. Our generative model encodes symmetry character-

istics of common man-made objects, preserves long-range

structural coherence, and describes objects of varying com-

plexity with a compact representation. We also propose a

method based on Gaussian Fields to generate a large scale

dataset of primitive-based shape representations to train

our network. We evaluate our approach on a wide range

of examples and show that it outperforms nearest-neighbor

based shape retrieval methods and is on-par with voxel-

based generative models while using a significantly reduced

parameter space.

1. Introduction

Many robotics and graphics applications require 3D in-

terpretations of sensory data. For example, picking up a

cup, moving a chair, predicting whether a stack of blocks

will fall, or looking for keys on a messy desk all rely

on at least a vague idea of object position, shape, con-

tact and connectedness. A major challenge is how to rep-

resent 3D object geometry in a way that (1) can be pre-

dicted from noisy or partial observations; and (2) is use-

ful for reasoning about contact, support, extent, and so on.

Recent efforts often focus on voxelized volumetric repre-

sentations (e.g., [41, 40, 13, 9]). Instead, we propose to

represent objects with 3D primitives (oriented 3D rectan-

gles, i.e. cuboids). Compared to voxels, the primitives are

much more compact, for example 45-D for 5 primitives pa-

rameterized by scale-rotation-translation vs 32,256-D for a

Input depth image

3D-PRNN

Multiple 
generations

Figure 1. A step-by-step primitive-based shape generation by 3D-

PRNN. As an illustration, given single depth image, we sequen-

tially predicts sets of primitives that form the shape. Each time we

randomly sample one primitive from a set and generate the next

set of primitives conditioning on the current sample.

32x32x32 voxel grid. Also, primitives are holistic — rep-

resenting an object with a few parts greatly simplifies rea-

soning about stability, connectedness, and other important

properties. Primitive-based 3D object representations have

long been popular in psychology (e.g. “geons” by Bieder-

man [3]) and interactive graphics (e.g. “Teddy” [18]), but

they are less commonly employed in modern computer vi-

sion due to the challenges of learning and predicting models

that consist of an arbitrary number of parameterized compo-

nents.

Our goal is to learn 3D primitive representations of ob-

jects from unannotated 3D meshes. We follow an encoder-

decoder strategy, inspired by recent work [14, 38], using a

recursive neural network (RNN) to encode an implicit shape

representation and then sequentially generate primitives to

approximate the shape as shown in Fig. 1. One challenge

in training such a primitive generation network is acquiring

ground truth data for primitive-based shape representations.

To address this challenge, we propose an efficient method

based on Gaussian Fields and energy minimization [6] to

iteratively parse shapes into primitive components. We op-
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Figure 2. 3D-PRNN overview. We illustrate the method on the task of single depth shape completion. The network starts from encoding

the input depth image into a feature vector, which is then sent to the ”recurrent generator” consisting stacks of Long Short-Term Memory

(LSTM) and a Mixture Density Network (MDN). At each time step, the network predicts a set of primitives conditioned on both the depth

feature and the previously sampled single primitive. The final reconstruction results and ground truth are shown on the right.

timize a differentiable loss function using robust techniques

(L-BFGS[43]). We use this (unsupervised) optimization

process to create the primitive ground truth, solving for a

set of primitives that approximates each 3D mesh in a col-

lection. The RNN can then be trained to generate new

primitive-based shapes that are representative of an object

class’ distribution or to complete an object’s shape given a

partial observation such as a depth image or point cloud.

To model shapes, we propose 3D-PRNN, an RNN-based

generative model that predicts context-sensitive sequences

of primitives in object-centric coordinates, as shown in Fig-

ure 2. To predict shape from depth, the network is trained

jointly with the single depth image and a sequence of prim-

itives configurations (shape, translation and rotation) that

form the complete shape. During testing, the network gets

input of a depth map and sequentially predicts primitives

(ending with a stop signal) to reconstruct the shape. Our

generative RNN architecture is based on a Long Short-Term

Memory (LSTM) and a Mixture Density Network (MDN).

We evaluate our proposed generative model by compar-

ing with baselines and state-of-the-art methods. We show

that, even though our method has less degrees of freedom in

representation, it achieves comparable accuracy with voxel

based reconstruction methods. We also show that encoding

further symmetry and rotation axis constraints in our net-

work significantly boosts performance.

Our main contributions are:

• We propose 3D-PRNN: a generative recurrent neural

network that reconstructs 3D shapes as sequences of

primitives given a single depth image.

• We propose an efficient method to fit primitives from

point clouds based on Gaussian-fields and energy

minimization. Our primitive representation provides

enough training samples for 3D-PRNN in 3D recon-

struction.

2. Related Work

Primitive-based Shape Modeling: Biederman, in the

early 1980s, popularized the idea of representing shapes as

a collection of components or primitives called “geons” [3],

and early computer vision algorithms attempted to recover

object-centered 3D volumetric primitives from single im-

ages [10]. In computer aided design, primitive-based shape

representations are used for 3D scene sketches [42, 31],

shape completion from point clouds [33, 24, 32]. In the case

that scans of shapes often have canonical parts like planes or

boxes and efficient solution for large data is required, prim-

itives are used in reconstructions of urban and architectural

scenes [7, 23, 5, 35]. Recently, more compact and paramet-

ric representations in the form of template objects [39], and

set of primitives [37] have been introduced. These represen-

tations, however, require non trivial effort to accommodate

variable number of configurations within the object class

they are trained for. This is mainly because of their single

feed-forward design, which implicitly forces the prediction

of a discrete number of variables at the same time.

Object 3D shape reconstruction can be attempted

given an RGB image [41, 13, 1, 9]or depth image [40, 29,

12] Recently proposed representations and prediction ap-

proaches for 3D data in the context of prediction from sen-

sory input have mainly either focused on part- and object-

based retrieval from large repositories [29, 1, 25, 20], or

voxelized volumetric representations [41, 40, 13, 9]. A bet-

ter model fitting includes part deformation [8] and sym-

metry [22]. Wu et al. [40] present preliminary results on

automatic shape completion from depth by classifying hid-

den voxels with a deep network. Wu et al. [39] reconstruct
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Figure 3. Sample primitive fitting result. We show our primitive

fitting results on chairs, tables and sofas. We overlay our fitted

primitives on the sampled 3D point clouds of each shape.

Figure 4. Failure cases. Main causes are : too complex shape

details to be represented by primitive blocks (left), The smoothing

property of Gaussian force fields is not good at describing small

hollow shape (middle), small cluster of point clouds are easily

missed through our randomized search scheme (middel and right).

shapes based on predicted skeletons. Unlike mesh-based

or voxel-based shape reconstruction, our method predicts

shapes with aggregations of primitives that has the benefit

for lower computational and storage cost.

Generative Models with RNNs: Graves [14] uses

Long Short-term Memory recurrent neural networks to

generate complex sequences of text and online handwrit-

ing. Gregor et al. [15] combine LSTM and a variational

auto-encoder, called the Deep Recurrent Attentive Writer

(DRAW) architecture, for image generation. The DRAW

architecture is a pair of RNNs with an encoder network that

compresses the real images presented during training, and

a decoder that reconstitutes images after receiving codes.

Rezende et al. [19] extend DRAW to learn generative mod-

els of 3D structures and recover this structure from 2D im-

ages via probabilistic inference. Our 3D-PRNN, which se-

quentially generates primitives, is inspired by Graves’ work

to sequentially generate parameterized handwriting strokes

and the PixelRNN approach [38] to model natural images

as sequentially generated pixels. To produce parameterized

3D primitives (oriented cuboids), we customize the RNN to

encode explicit geometric constraints of symmetry and rota-

tion. For example, separately predicting whether a primitive

should rotate along each axis and by how much improves

results over more simply predicting rotation values, since

many objects consist of several (unrotated) cuboids.

3. Fitting Primitives from Point Clouds

One challenge in training our 3D-PRNN primitive gen-

eration network is the lack of large scale ground truth prim-

itive based shape reconstruction data. We propose an ef-

ficient method to generate such data. Given a point cloud

representation of a shape, our approach finds the most plau-

sible primitives to fit in a sequential manner, e.g. given a

table, the algorithm might identify the primitive that fits to

the top surface first and then the legs successively. We use

rectangular cuboids as primitives which provide a plausi-

ble abstraction for most man-made objects. Our method

proposes a fast parsing solution to decompose shapes with

varying complexity into a set of such primitives.

3.1. Primitive Fitness Energy

We formulate the successive fitting of primitives as an

energy minimization scheme. While primitive fitting at

each step resembles the method of Iterative Closest Point

(ICP) [2], we have additional challenges. ICP ensures ac-

curate registration when provided with a good initialization,

but in our case we have no prior knowledge about the num-

ber and the rough shape of the primitives. Moreover, we

need to solve the more challenging partial matching prob-

lem since each primitive matches only part of the shape,

which we do not know in advance.

We represent the shape of each primitive with scale pa-

rameters S = [sx, sy, sz], which denotes the scale of a

unit cube along three orthogonal axes. The position and

orientation of the primitive are represented by translation,

T = [tx, ty, tz], and Euler angles, θ = [θx, θy, θz], re-

spectively. Thus the primitive is parameterized by x =
[sx, sy, sz, tx, ty, tz, θx, θy, θz]. Furthermore, we assume

a fixed sampling of the unit cube into a set of points,

P = {pm}m=1,...,M . Given a point cloud representation

of a shape, Q = {qn}n=1,...,N , our goal is to find the set

of primitives X = {xt}t=1,2,3,... that best fit the shape. We

employ the idea of Gaussian Force Fields [6] and Truncated

Signed Distance Function (TSDF) [27] to formulate the fol-

lowing continuously differentiable energy function which is

convex in a large neighborhood of the parameters:

Ep = −
∑

m,n

Vp min

(

exp
(

−
‖R(θ)Spm + T − qn‖

2

σ2

)

, ξ

)

,

(1)

where R(θ) is the rotation matrix, ξ is the truncation pa-

rameter (ξ = 0.9 in our experiments) and Vp denotes the

volumetric-wise sampling ratio that is calculated as the vol-

ume of primitive P over its number of sampled points M .

Vp helps avoid local minimum that results in a too small or

too large primitive. Our formulation represents the error as
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a smooth sum of Gaussian kernels, where far away point

pairs are penalized less to account for partial matching.

The energy function given in Eq. 1 is sensitive to the pa-

rameter σ. A larger σ will encourage fitting of large primi-

tives while allowing larger distances between matched point

pairs. In order to prefer tighter fitting primitives, we intro-

duce the concept of negative shape, Q−, which is repre-

sented as a set of points sampled in the non-occupied space

inside the bounding box of a shape. We update our energy

function as:

Ew = E+

P − αE−

P , (2)

where E+

P is the fitting energy between the shape and the

primitive and E−

P is the fitting energy between the nega-

tive shape and the primitive. Given point samples, both

E+

P and E−

P are computed as in Eq. 1. α denotes the

relative weighting of these two terms and is defined as

α = max
(

min(10, |Q|/|Q−| × 5), 0.1
)

.

3.2. Optimization

Given the energy formulation described in the previous

section, we perform primitive fitting in a sequential manner.

During each iteration, we randomly initialize 10 primitives,

optimize Eq. 2 for each of these primitives and add the best

fitting primitive to our primitive collection. We then remove

the points in Q that are fit by the selected primitive and iter-

ate. We stop once all the points in Q are fit by a primitive.

We optimize Eq. 2 in an iterative manner. We first fix θ
and solve for S and T , we then fix S and T and solve for

θ. In our experiments this optimization converges in 5 itera-

tions and we use the L-BFGS toolbox [30] at each optimiza-

tion step. We summarize this process with the pseudo-code

given in Alg. 1.

Simplification with symmetry. We utilize the symme-

try characteristics of man-made shapes to further speed up

the primitive parsing procedure. We use axis-aligned 3D

objects where symmetric objects have a common global

symmetry plane. We compare the geometry on the two sides

of this plane to decide whether an object is symmetric or

not. Once we obtain a primitive that lies on one side of the

symmetry plane, we automatically generate the symmetric

primitive on the other side of the plane.

Refinement. At each step, we fit primitives with a rel-

atively larger Gaussian field (σ = 2 in Eq. 1) for fast con-

vergence and easier optimization. We then refine the fitting

with a finer energy space (σ = 0.5) to match the primitive

to the detailed shape of the object. While our random search

scheme enables a fast parsing method, errors may accumu-

late in the final set of primitives. To avoid such problems,

we perform a post-refinement step. We refine the parame-

ters of a single primitive xt while fixing the other parame-

ters. We use the parameters of xt obtained from the initial

fitting as initialization. We define the energy terms in Eq. 2

Algorithm 1 Primitive fitting

1: Given shape point clouds Q and empty primitive set X;

2: β = 0.97|Q|, t = 0;

3: while |Q| < β or i <maxPrimNum do

4: Ebest = Inf;

5: for i = 1 :maxRandNum do

6: θ = [0, 0, 0], random initialize S, T , j = 0;

7: while δ < 0.01 or j <maxIter do

8: fix θ, solve S, T → S∗, T ∗ by Eq .2;

9: fix S∗, T ∗, update θ → θ∗ by Eq .2;

10: calculate Ew(S
∗, T ∗, θ∗) by Eq .2;

11: if Ew < Ebest then

12: Ebest = Ew, xbest = [S∗, T ∗, θ∗];

13: δ = ‖[S, T, θ]− [S∗, T ∗, θ∗]‖2;

14: S = S∗, T = T ∗

p , k = k + 1;

15: xt = xbest, add xt to X , t = t+ 1;

16: Remove fitted points from Q and add to non-

occupied space Q−

return X

with respect to the points that are fit by xt and the points

that are not fit by any primitive yet. We note that this se-

quential refinement is similar to back propagation used to

train neural networks. In our experiments, we perform the

refinement each time we fit 3 new primitives.

4. 3D-PRNN: 3D Primitive Recurrent Neural

Networks

Generating primitive-based 3D shapes is a challenging

task due to the complex multi-modal distribution of shapes

and the unconstrained number of primitives required to

model such complex shapes. We propose 3D-PRNN, a gen-

erative recurrent neural network to accomplish this task.

3D-PRNN can be trained to generate novel shapes both ran-

domly and by conditioning on partial shape observations

such as a single depth map.

4.1. Network Architecture

An overview of the 3D-PRNN network is illustrated in

Fig. 2. The network gets as input a single depth image

and sequentially predicts primitives to form a 3D shape.

For each primitive, the network predicts its shape (height,

length, width), position (i.e. translation), and orientation

(i.e. rotation). Additionally, at each step, a binary end

of generation signal is predicted which indicates no more

primitive should be generated.

Depth map encoder. Each input depth map, I , is first

resized to be 64× 64 in dimension with values in the range

[0, 1] (we set the value of background regions to 0). I is

passed to an encoder which consists of stacks of convolu-

tional and LeakyRelu [26] layers as shown in Fig. 5 (a): the
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7⨉7 Conv, stride 2

LeakyRelu (0.1)

5⨉5 Conv, stride 2

LeakyRelu (0.1)

3⨉3 Conv, stride 2

LeakyRelu (0.1)

FC (64)

FC (32)

Max Pooling 
(2⨉2)

Max Pooling 
(2⨉2)

Input depth   (64⨉64)

(a) Encoder architecture (b) LSTMs architecture

h1
t

1⨉32 depth feature vector

yt

d

xr
t

xa
txs

t

h2
t

h3
t

xt-1

Figure 5. Detailed architectures of (a) the depth map encoder and

(b) the primitive recurrent generator unit in 3D-PRNN. See the

architecture descriptions in Section 4.1.

first layer has 32 kernels of size 7 × 7 and stride 2, with

a LeakyRelu layer of 0.1 slope in the negative part. The

second layer consists of 64 kernels of size 5 × 5 (stride 2),

followed by the same setting of LeakyRelu and a max pool-

ing layer. The third layer has 128 kernels of size 3×3 (stride

2) followed by LeakyRelu and max pooling. The next two

fully-connected layers has neurons of 64 and 32. The output

1×32 feature vector d is then sent to the recurrent generator

to predict a sequence of primitives.

Recurrent generator. We apply the Long Short-Term

Memory (LSTM) unit inside the recurrent generator, which

is shown to be better at alleviating the vanishing or explod-

ing gradient problems [28] when training RNNs. The ar-

chitectural design is shown in Fig. 5 (b). The prediction

unit consists of L layers of recurrently connected hidden

layers (we set L = 3, which is found to be sufficient to

model the complex primitive distributions) that encode both

the depth feature d and the previously predicted primitive

xt−1 and then computes the output vector, yt. yt is used

to parametrize a predictive distribution Pr(xt|yt) over the

next possible primitive xt. The hidden layer activations are

computed by iterating over the following equations in the

range t = [1, T ] and l = [2, L]:

zlt = W l
xxt−1 +W l

hh
l
t−1 +W l

ch
l−1
t +W l

dd (3)

[ilt, f
l
t , o

l
t] = σ(zlt) (4)

glt = tanh(zlt) (5)

clt = f l
tc

l
t−1 + iltg

l
t (6)

hl
t = olt tanh(c

l
t) (7)

where zlt capsules the input features in the l-th layer (when

l = 1, there is no hidden value propagated from the previous

layers and thus z1t = W 1
xxt +W 1

hh
1
t−1 +W 1

c d), ht and ct
denote the hidden and cell states, whereas W l

x,W
l
h,W

l
c ,W

l
d

denote the linear weight matrix (we omit the bias term for

brevity), it, ft, ot, gt are respectively the input, forget, out-

put, and context gates, which have the same dimension as

the hidden states (size of 400). σ is the logistic sigmoid

function and tanh is the hyperbolic tangent function.

At each time step t, the distribution of the next primitive

is predicted as yt = Wy[h
1
t , h

2
t , ..., h

L
t ], where we perform a

linear transformation on the concatenation of all the hidden

values. This concatenation is similar in spirit to using skip

connections [36, 17], which is shown to help training and

mitigate the vanishing gradient problem. In a similar fash-

ion, we also pass the depth feature d to all the hidden layers.

We will explain latter how the primitive configuration xt is

sampled from a distribution predicted from yt.
We predict parameters of one axis per time conditioned

on the previous axis. We model this joint distribution of pa-

rameter on each axis xs
i = [si, ti] (where i indicates one of

the 3 axes of space) as a mixture of Gaussians conditioned

on previous axis with K mixture components:

(

{πk
t , µ

k
t , σ

k
t , ρ

k
t }

K
k=1, et

)

= f(yt), (8)

where πt, µt, σt and ρt are the weight, mean, standard de-

viation, and correlation of each mixture component respec-

tively, predicted from a fully connected layer f(yt). Note

that ei is the binary stopping sign indicating whether the

current primitive is the final one and it helps with predict-

ing a variable-length sequence of primitives. In our exper-

iments we set K = 20. We randomly sample a single in-

stance xs
i = [si, ti, ei] ∈ R × R × {0, 1} drawn from the

distribution f(yt). The sequence xt represents the parame-

ters in the following order: xs
x → xs

y → xs
z for the shape

translation configuration on x, y, z axis of the first primitive

and the stopping sign.

This is essentially a mixture density network (MDN) [4]

on top of the LSTM output and its loss is defined:

Ls(x) =

T
∑

t=1

− log
(

∑

k

πk
t N(xt+1|µ

k
t , σ

k
t , ρ

k
t )
)

− I
(

(xt+1)3 = 1
)

log et − I
(

(xt+1)3 6= 1
)

log(1− et)
(9)

The MDN is trained by maximizing the log likelihood of

ground truth primitive parameters in each time step, where

we calculate gradients explicitly for backpropagation as

shown by Graves [14]. We found this stepwise supervised

training works well and avoids sequential sampling used in

[37, 11].

Geometric constraints. Another challenge in predicting

primitive-based shape is to model rotation, given that the

rotation axis is sensitive to slight change in rotation values

under Euler angles. We found that by jointly predicting the

rotation axis xa and the rotation value xr, both the rotation

prediction performs better and the overall primitive distri-

bution modeling get alleviated as shown in Fig. 6, quanti-

tative experiments are in Sec. 5.3. The rotation axis (xa) is
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Figure 6. Training performance comparison on validation

set of synthetic depth map from ModelNet. Both the mixture

density loss and the rotation MSE loss are averaged by sequence

length. The rotation values are normalized and values can have

ranges around 13, compared with the < 1 MSE loss. Our mixture

density estimation and rotation value estimation performs better

by enforcing loss on predicting rotation axis.

Figure 7. Shape synthesis result. We show various random sam-

pled shapes by our 3D-PRNN. The network is trained and tested

without context input. The coloring indicates the prediction order.

predicted by a three-layered fully connected network g(yt)
with size 64,32 and 1 and sigmoid function as shown in

fig. 5. The rotation value (xr) is predicted by a separate

three-layered fully connected network g∗(yt) with size 64,

32 and 1 and a Tanh(·) function.

4.2. Loss Function

The overall sequence loss of our network is:

L(x) = Ls(x
s) + Lr(x

r) + La(x
a), (10)

Lr(x) =
∑

t

‖xr
t − x̂r

t‖
2 (11)

La(x) =
∑

t

‖xa
t − x̂a

t ‖
2 (12)

Ls(x) is defined in Eq. 9. Lr(x) is a mean square loss be-

tween predicted, xr
t , and target, x̂r

t , rotation. La(x) is the

mean square loss between the predicted, xa
t , and ground

truth, x̂a
t , rotation axis.

5. Experiments and Discussions

We show quantitative results on automatic shape synthe-

sis. We quantitatively evaluate our 3D-PRNN in two tests:

1) 3D reconstruction on synthetic depth maps and 2) using

real depth maps as input.

We train our 3D-PRNN on ModelNet [40] categories:

889 chairs, 392 tables and 200 nightstands. We employ

the provided another 100 testing samples from each class

for evaluation. We train a single network with all shapes

classes jointly. In all experiments, to avoid overfitting, we

hold out 15% of the training samples, which are then used

to choose the number of training epochs. We then retrain

the network using the entire training set. Since a single net-

work is trained to encode all three classes, when predicting

shape from depth images, for example, there is an implicit

class prediction as well.

5.1. Implementation

We implement 3D-PRNN network using Torch. We train

our network on primitive-based shape configurations gener-

ated as described in Sec. 3. The parameters of each primi-

tive (i.e. shape, translation and rotation) are normalized to

have zero mean and standard deviation. We observe that the

order of the primitives generated by the method described

in Sec. 3 involves too much randomness that makes train-

ing hard. Instead, we pre-sort the primitives based on the

height of each shape center in a decreasing fashion. This

simple sorting strategy significantly boosts the training per-

formance. Additionally, our network is trained only on one

side of the symmetric shapes to shorten the sequence length

and speed up the training process. To train with the genera-

tive mechanism, we use simple random sampling technique.

We use ADAM [21] to update network parameters with a

learning rate of 0.001, α = 0.95, and ǫ = e−6. We train the

network with batch size 380 and 50 on the synthetic data

and on the real data respectively.

At test time, the network takes a single depth map and

sequentially generates primitives until a stop sign is pre-

dicted. To initialize the first RNN feature x, we perform a

nearest neighbor query based on the encoded feature of the

depth map to retrieve the most similar shape in the training

set and use the configuration on its first primitive.

5.2. Shape Synthesis

3D-PRNN can be trained to generate new primitive-

based shapes. Fig. 7 shows our randomly generated shapes

synthesized from all three shape classes. We initialize the

first RNN feature x with a random sampled primitive con-

figuration from the training set. Since the first feature corre-

sponds to “width”, “translation in x-axis”, and “rotation on

x-axis” of the primitive, formally this initialization process

is defined as drawing a sample from a discrete uniform dis-

tribution of these parameters where the discrete samples are
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Figure 8. Sample reconstruction from synthetic data from ShapeNet. We show the input depth map, with the most probable shape

reconstruction from 3D-PRNN, and three successive random sampling results, compared with our ground truth primitive representation.

Input Depth 
Map

Most
probable

Random sampling GTRGB Input Depth 
Map

Most
probable

Random sampling GTRGB

Figure 9. Sample reconstruction from real depth map in NYUdv2. We show the input depth map, with the most probable shape

reconstruction from 3D-PRNN, and two successive random sampling results, compared with our ground truth primitive representation.

constructed from the training examples. The figure shows

that 3D-PRNN can learn to generate representative samples

from multiple classes and sometimes creates hybrids from

multiple classes.

5.3. Shape Reconstruction from Single Depth View

Synthetic data. We project synthetic depth maps from

training meshes. For both training and testing, we perform

rejection-sampling on a unit sphere for 5 views, bounded

within 20 degrees of the equator. The complete 3D shape

is then predicted using a single depth map as input to 3D-

PRNN. Our model can generate a sampling of complete

shapes that match the input depth, as well as the most likely

configuration, determined as the mean of the Gaussian from

the most probable mixture. We report 3D intersection over

union (IoU) and surface-to-surface distance [29] of the most

likely predicted shape to the ground truth mesh. To compute

IoU, the ground truth mesh is voxelized to 30 x 30 x 30 res-

olution, and IoU is calculated based on whether the voxel

centers fall inside the predicted primitives or not. Surface-

to-surface distance is computed using 5,000 points sampled

on the primitive and ground truth surfaces, and the distance

is normalized by the diameter of a sphere tightly fit to the

ground truth mesh (e.g. 0.05 is 5% of object maximum di-

mension).

Tables 1 and 2 show our quantitative results. “GT prim”

is the ground truth primitive representation generated by our

parsing optimization method during training. This serves
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chair table night stand

GT prim 0.473 0.533 0.657

NN Baseline 0.269 0.220 0.256

Wu et al. [40] (mean) 0.253 0.250 0.295

3D-PRNN 0.245 0.188 0.204

3D-PRNN + rot loss 0.238 0.263 0.266

Table 1. Shape IoU evaluation in synthetic depth map in Mod-

elNet. We explore two settings of 3D-PRNN with or without ro-

tation axis constrains, and compare it with ground truth primitive

and the nearest neighbor baseline. We also compare to the Wu et

al. [40] deep network voxel generation method.

chair table night stand

GT prim 0.049 0.044 0.044

NN baseline 0.075 0.089 0.100

Wu et al. [40] (mean) 0.045 0.035 0.057

3D-PRNN 0.074 0.080 0.104

3D-PRNN + rot loss 0.074 0.078 0.092

Table 2. Surface-to-surface distance evaluation in synthetic depth

map in ModelNet. We explore two settings of 3D-PRNN with or

without rotation axis constrains, and compare it with ground truth

primitive and the nearest neighbor baseline.

as an upper bound on performance by our method, corre-

sponding to how well the primitive model can fit the true

meshes. “NN Baseline” is the nearest neighbor retrieval of

shape in training set based on the embedded depth feature

from our network. By enforcing rotation axis constraints

(“3D-PRNN + rot loss”), our 3D-PRNN achieves better per-

formance, which conforms with the learning curve as shown

in Fig. 6. Though both nearest neighbor and 3D-PRNN are

based on the trained encoding, 3D-PRNN outperforms NN

Baseline for table and nightstand, likely because it is able to

generate a greater diversity of shapes from limited training

data. We compare with the voxel-based reconstruction of

Wu et al. [40], training and testing their method on the same

data using publicly available code. Since Wu et al. generate

randomized results, we measure the average result over ten

runs. Our method performs similarly to Wu et al. [40] on

the IoU measure. Wu et al. performs better on surface dis-

tance, which is less sensitive to alignment but more sensi-

tive to details in structures. The performance of our ground

truth primitives confirms that much of our reduced perfor-

mance in surface distance is due to using a coarser abstrac-

tion (which though not preserving surface detail has other

benefits, as discussed in introduction).

Real data (NYU Depth V2). We also test our model

on NYU Depth V2 dataset [34] which is much harder than

synthetic due to limited training data and the fact that depth

images of objects are in lower resolution, noisy, and often

occluded conditions. We employ the ground truth data la-

belled by Guo and Hoiem [16], where 30 models are manu-

ally selected to represent 6 categories of common furniture:

chair, table, desk, bed, bookshelf and sofa. We fine-tune our

network that was trained on synthetic data using the training

class chair table night stand

GT prim 0.037 0.048 0.020

NN baseline+ft 0.118 0.176 0.162

NN baseline 0.101 0.164 0.160

3D-PRNN+ft 0.112 0.168 0.192

3D-PRNN 0.110 0.181 0.194

Table 3. Surface-to-surface distance evaluation in real depth map

in NYUd v2. We explore two settings of 3D-PRNN with (+ft) or

without fine-tuning, and compare it with ground truth primitive

and the nearest neighbor baseline.

class chair table night stand

GT prim 0.543 0.435 0.892

NN baseline +ft 0.171 0.078 0.286

NN baseline 0.145 0.076 0.262

3D-PRNN +ft 0.158 0.075 0.081

3D-PRNN 0.138 0.052 0.086

Table 4. Shape IoU evaluation in real depth map in NYUd v2.

We explore two settings of 3D-PRNN with (+ft) or without fine-

tuning, and compare it with ground truth primitive and the nearest

neighbor baseline.

set of NYU Depth V2. We report results on test set based

on the same evaluation metric as the synthetic test shown in

Table 4 and 3. Since nightstand is less common in the train-

ing set and often occluded depth regions may be similar to

those for tables, the network often predicts primitives in the

shapes of tables or chairs for nightstands, resulting in worse

performance for that class. Sample qualitative results are

shown in Fig. 9.

3D Shape Segmentation. Since our primitive based re-

constructions are following meaningful part configurations

naturally, another application where our method can apply

is shape segmentation. Please refer to our supplemental ma-

terial for shape segmentation task details and results, where

we compare with state of the art methods as well.

Conclusions and Future Work. We present 3D-PRNN,

a generative recurrent neural network that uses recurring

primitive based abstractions for shape synthesis. 3D-PRNN

models complex shapes with a low parametric model, which

advantages such as being capable of modeling shapes with

fewer training examples available, and a large intra- and

inter-class variance. Evaluations on synthetic and real depth

map reconstruction tasks show that results comparable to

higher degree of freedom representations can be achieved

with our method. Future explorations include allowing var-

ious primitive configurations beyond cuboids (i.e. cylinders

or spheres), encoding explicit joints and spatial relationship

between primitives.
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