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The document contains the supplementary materials for
“Ensemble Diffusion for Retrieval”. The primary goal of
this document is to provide the proof of used propositions
in Sec. 1, which are omitted in the main paper due to the
space limitation.

As a secondary goal, we present additional experiments
for a more comprehensive evaluation, including the quan-
titative evaluations in Sec. 2, the qualitative evaluations in
Sec. 3, and the parameter discussions in Sec. 4, respectively.

1. Propositions
Proposition 1. Eq. (5) converges to Eq. (6).

Proof. By applying vec(·) to both sides of Eq. (6), we ob-
tain

Ã(t+1) = αSÃ(t) + (1− α)Ĩ ,
where S = S(1)⊗S(2). Therefore, Ã(t+1) can be expanded
as

Ã(t+1) = (αS)tÃ(1) + (1− α)
t−1∑
i=0

(αS)iĨ .

It is known that the spectral radius of both S(1) and S(2)

are no larger than 1. Hence, all the eigenvalues of S are in
[−1, 1]. Considering that 0 < α < 1, we have

lim
t→∞

(αS)tÃ(1) = 0,

lim
t→∞

(1− α)
t−1∑
i=0

(αS)iĨ = (1− α)(I − αS)−1Ĩ .

Therefore, one can easily induce that

lim
t→∞

Ã(t+1) = (1− α)(I − αS)−1Ĩ ,

which is identical to Eq. (6) after applying vec−1 to both
sides.

Proposition 2. The closed-form solution of Eq. (7) is E-
q. (6).
∗indicates equal contributions.
†corresponding author.

Proof. Define Y ≡ N(i − 1) + k, Z ≡ N(j − 1) + l,
D = D(1) ⊗ D(2) ∈ RN2×N2

and W = W (1) ⊗W (2) ∈
RN2×N2

. Then the left term of Eq. (7) can be transformed
to
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Y,Z=1

WY Z
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DY Y

− ÃZ√
DZZ

)2

=

N2∑
Y,Z=1

WY Z
Ã2
Y

DY Y
−

N2∑
Y,Z=1

ÃY
WY Z√
DY Y DZZ

ÃZ

=

N2∑
Y=1

Ã2
Y − ÃTD−0.5WD−0.5Ã

=ÃT
(
I − D−0.5WD−0.5

)
Ã,

=ÃT(I − S)Ã.

The right term can be described as µ‖Ã − Ĩ‖22. Therefore,
the objective function in Eq. (7) becomes

min
Ã
ÃT(I − S)Ã+ µ‖Ã− Ĩ‖22,

whose partial derivative is

2(I − S)Ã+ 2µ(Ã− Ĩ).

In order to get the optimal solution of the above problem,
set the derivative to zero and substitute µ = 1

α −1. We have

Ã = (1− α)(I − αS)−1Ĩ ,

which is equivalent to Eq. (6) after applying vec−1 to both
sides.

Proposition 3. Eq. (14) converges to the solution in E-
q. (12).

Proof. Eq. (14) can be vectorized to

Ã(t+1) = SÃ(t) + (1−
M∑
v=1

αv)Ĩ

= StÃ(1) + (1−
M∑
v=1

αv)

t−1∑
i=0

SiĨ .



where S =
∑M
v=1 αvSv .

Similar to Proposition 1, we only need to prove that all
the eigenvalues of S are in (−1, 1). Since all the eigenvalues
of Sv(1 ≤ v ≤ M) are in [−1, 1], the spectral radius of S
is bounded by

∑M
v=1 αv . Considering µ > 0, βv > 0 and

Eq. (13), we have

M∑
v=1

αv =

∑M
v′=1 βv′

µ+
∑M
v′=1 βv′

< 1.

Therefore, we have

lim
t→∞

StÃ(1) = 0,

Then,

lim
t→∞

Ã(t+1) = (1−
M∑
v=1

αv)(I −
M∑
v=1

αvSv)−1Ĩ .

The proof is complete.

2. Quantitative Evaluation
2.1. Face Retrieval

We follow [3] to evaluate the performances on ORL face
dataset. ORL dataset is comprised of 400 grayscale face
images, divided into 40 categories. The evaluation metric is
called bull’s eye score, which counts the average recall be-
fore the top-15 candidates in the ranking list. For each face
image, we extract 128 dimensional SIFT [6], 124 dimen-
sional HoG [2], 232 dimensional LBP [8] and 512 dimen-
sional GIST [9]. Their baseline performances are 84.95%,
73.70%, 73.15% and 83.67% respectively.

The detailed performances of tensor product fusion is
given in Table 1, and the performance comparison of differ-
ent fusion methods is given in Table 2. Again, RED yields
the best performances. Compared with [3] which enumer-
ates 72 kinds of diffusion processes (by varying 4 differen-
t affinity initializations, 6 different transition matrices and
3 different update schemes), RED gives nearly 20 percent
gain in the performance. The reason for the performance
gain are two folds. First, instead of using only one similar-
ity, we leverage more than two similarities, which can be
well handled by the proposed framework. Second, the pro-
posed RED is a more robust fusion with diffusion method
with automatic weight learning.

2.2. The performances of Tensor Product Fusion

Table 3 and Table 4 present the detailed retrieval perfor-
mances of tensor product fusion on Holidays dataset [5] and
Ukbench dataset [7], respectively.

The best results (marked in red) and the worse results
(marked in blue) are the upper and the lower bounds of the
performances of tensor product fusion, which are presented
in the main paper.

SIFT HOG LBP GIST
SIFT - 90.00 89.75 97.17
HOG 90.60 - 87.25 92.45
LBP 90.50 87.13 - 94.38
GIST 96.83 91.60 93.05 -

Table 1. The bull’s eye scores of tensor product fusion on ORL
dataset.

Methods Bull’s eye score

Generic Diffusion Process [3] 77.42
Naive Fusion 93.53
Tensor Product Fusion 87.13∼97.17
RED 97.75

Table 2. The performance (%) comparison on ORL face dataset.

NetVLAD SPoC ResNet HSV
NetVLAD - 92.36 91.85 88.24
SPoC 92.46 - 90.02 87.55
ResNet 91.85 90.09 - 85.44
HSV 87.77 87.33 85.12 -

Table 3. The mAPs of tensor product fusion on Holidays dataset.

NetVLAD SPoC ResNet HSV
NetVLAD - 3.871 3.874 3.626
SPoC 3.876 - 3.854 3.629
ResNet 3.884 3.861 - 3.629
HSV 3.680 3.685 3.682 -

Table 4. The N-S scores of tensor product fusion on Ukbench
dataset.

3. Qualitative Evaluation
In this section, we present three sample retrieval result-

s for qualitative evaluations on ModelNet40 dataset [12].
The retrieval results of the 4 baseline similarities (Volumet-
ric CNN [11], GIFT [1], ResNet [4], PANORAMA [10])
are presented in the first 4 rows. The retrieval results of
the 3 fusion methods (naive fusion, tensor product fusion,
RED) are presented in the next 3 rows. The performances
of tensor product fusion are obtained by fusing ResNet [4]
and GIFT [1].

As can be seen from Fig. 2 and Fig. 3, fusion methods
clearly outperform baseline similarities. Moreover, RED
yield 100% retrieval precision in the top-10 retrieved list,
which is superior to other fusion methods.

In Fig. 4, one can observe that all the 4 baseline sim-
ilarities fail with this query. However, by exploiting the
complementary nature among them, RED still improves the
retrieval performance remarkably.

4. Parameter Discussion
In Fig. 1(a), we plot the influence of µ used by RED on

the retrieval performance with Holidays dataset. As can be
seen, RED is not sensitive to the change of µ as long as it is
in a reasonable range.
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Figure 2. The first sample retrieval results on ModelNet40 dataset. False positives are in red boxes

Query Top 10 retrieved shapes

Figure 3. The second sample retrieval results on ModelNet40 dataset. False positives are in red boxes

As suggested in [3, 13], it is crucial to determine
the number of nearest neighbors k on the affinity graph.
Fig. 1(b) analyzes the influence of k on the retrieval perfor-
mance with Holidays dataset. It can be observed that when
k ≥ 5, the performance is significantly improved (around
93 in mAP). When k keeps increasing, the performance
drops slightly due to the inclusion of noisy edges on the

affinity graph. We can infer that it is still an open issue to
automatically select a proper k on the affinity graph.
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Figure 4. The third sample retrieval results on ModelNet40 dataset. False positives are in red boxes.
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Figure 1. The influence of µ and the number of nearest neighbors
k on Holidays dataset.
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