
High Order Tensor Formulation for Convolutional Sparse Coding

Adel Bibi and Bernard Ghanem
King Abdullah University of Science and Technology (KAUST), Saudi Arabia

adel.bibi@kaust.edu.sa, bernard.ghanem@kaust.edu.sa

In this supplementary material, we start first by re-deriving the solver for our proposed TCSC for an arbitrary number of
training examples N . We later discuss some further details on the computational complexity. Then, we discuss the some
details of the parameters using for the experiments with some extra experiments. Lastly, we show some possible extensions
to another useful regularizers that were not possible with the standard SCSC.

The problem in hand to be solved is given as follows:

min
D, #»X

1

2

N∑
n

‖ #»Yn −D ~HO
#»Xn‖2F + λ‖ #»Xn‖1, . . . , 1︸ ︷︷ ︸

d+1

s.t. ‖ #»Dk‖2F ≤ 1 ∀k = 1, . . . ,K (1)

where
#»Yn ∈ Rn1×1×n2×···×nd ,D ∈ Rn1×K×n2×···×nd ,

#»Xn ∈ RK×1×n2×···×nd , and
#»Dk = D(:, k, :, . . . , :) ∈ Rn1×1×n2×···×nd .

As discussed in the main manuscript, Problem (11) will be solved by alternating between the sparse codes and the dictio-
naries where each subproblem is solved using ADMM.

Subproblem (1): Sparse Coding. Fixing D, we solve:

argmin
#»X , #»Z

1

2

N∑
n

‖ #»Yn −D ~HO
#»Xn‖2F + λ‖ #»Z‖1, . . . , 1︸ ︷︷ ︸

d+1

(2)

s.t.
#»Xn =

#»Zn ∀n = 1, . . . , N

The augmented lagrangian is given as follows:

L(#»Xn∀n,
#»Zn∀n,

#»U n∀n) =
1

2

N∑
n

‖ #»Yn −D ~
#»Xn‖2F + λ

N∑
n

‖ #»Zn‖1, . . . , 1︸ ︷︷ ︸
d+1

+
ρ1
2

N∑
n

‖ #»Xn −
#»Zn‖2F +

N∑
n

<
#»U n, (

#»Xn −
#»Zn) >

(3)

It is clear that the subproblem (1), and thereafter its augmented lagrangian, is in fact separable in each of the training ex-
amples

#»Yn. Thus, the ADMM updates are exactly as presented in the main manuscript for every training sample. Moreover,
and as discussed in the main manuscript, the subproblems can be solved in the Fourier domain.

Update
#»X :

X̂ (i)
n ← (D̂(i)>D̂(i) + ρIK)−1

(
D̂(i)>Ŷ(i)

n + ρẐ(i)
n − Û (i)

n

)
(4)

where {X̂ (i)
n }∀n=1,...,N can be concatenated along the second dimension as

X̂ ∈ CK×N×n2×···×nd .

1

Update
#»

Ẑ:

#»

Ẑn ← argmin
#»

Ẑn

λ‖
#»

Ẑn‖1, . . . , 1︸ ︷︷ ︸
d+1

+
ρ

2
‖

#»

Ẑn −

#»An︷ ︸︸ ︷(#»

X̂n +
1

ρ

#»

Û n
)
‖2F ∀n = 1, . . . , N (5)

This is the proximal operator to the `1 norm, popularly known as the soft thresholding operator, S λ
ρ1

(a) = sign(a)max(0, |a|−
λ
ρ1
). It is applied in an element-wise fashion to tensor

#»An.

Update
#»

Û :
#»

Û n ←
#»

Û n + ρ(
#»

X̂n −
#»

Ẑn) (6)

where the update for
#»

Û is the standard dual ascent on the dual variables.
It is clear now that the sparse coding subproblem (1) is the same as in the main manuscript except that it mush be solved

for each training sample n. This is exactly analgous to all other CSC problems as in [1].

Subproblem (2): Dictionary Learning. Fixing
#»Xn ∀n from subproblem (1), we solve for D using ADMM, where the

augmented Lagrangian is:

L(D, T ,G) := 1

2

N∑
n

‖ #»Yn − (D ~HO
#»Xn)‖2F +

ρ2
2
‖D − T ‖2F

+ 〈G,D − T 〉+
K∑
k=1

1{‖ #»T k‖2F≤1}
(7)

Note that all operations in Equation (7) are preserved under unitary matrix multiplication. Unlike the sparse coding step,
the problem can be entirely solved in the Fourier domain. By using the diagonalization property of ~HO, the augmented
Lagrangian in the Fourier domain is rewritten as:

L(D̂, T̂ , Ĝ) := 1

2

N∑
n

‖ #̂»Yn − (D̂ ~HO
#̂»Xn)‖2F +

ρ2
2
‖D̂ − T̂ ‖2F

+ 〈Ĝ, D̂ − T̂ 〉+
K∑
k

1
‖ #̂»T k‖2F≤1

(8)

Update D:

D̂(i) ←
((N∑

n

Ŷ(i)
n X̂ (i)H

n

)
+ ρT̂ (i) − Ĝ(i)

)((N∑
n

X̂ (i)
n X̂ (i)H

n

)
+ ρIK

)−1
(9)

This is solved again for a linear index i = 1, . . . , n2n3 . . . nd.

Update T̂ : T̂ is updated using the proximal operator for the `2 unit ball as follows:

T̂ ← argmin
‖ #̂»T i‖2F≤1

ρ2
2
‖T̂ −

(
D̂ +

1

ρ2
Ĝ
)
‖2F (10)

As discussed in the main manuscript, the filters
#»Dk have smaller spatial support than the training images

#»Y . To allow for
this, the problem is re-written as follows (refer to main manuscript for details) and is solved exactly similar to the caseN = 1.

Update Ĝ: Ĝ ← Ĝ + ρ2(D̂ − T̂)

Extensions to in painting and video completion problems. In here, we show how our TCSC formulation can be extended
to handle boundary conditions as proposed by [1] with the M matrix. Since our reconstruction images yn are high order
tensors,M∈ Rn1×1×n2×···×nd . The problem can thus be reformulated as follows:

min
D, #»X

1

2

N∑
n

‖ #»Yn −M� (D ~HO
#»Xn)‖2F + λ‖ #»Xn‖1, . . . , 1︸ ︷︷ ︸

d+1

s.t. ‖ #»Dk‖2F ≤ 1 ∀k = 1, . . . ,K (11)

where the operation � is element wise product. The updates are all exactly the same except for D̂(i) and X̂ (i)
n . As for the

X̂ (i)
n the updates are given as follows.

#»Xn = argmin
#»Xn

1

2
‖ #»Yn −M� (D ~HO

#»Xn)‖22 +
ρ1
2
‖ #»X − #»Z‖22+ < Un,Xn >

⇔

X̂ (i)
n = argmin

X̂ (i)
n

1

2
‖Ŷ(i)

n −M(i) � (D̂(i)X̂ (i)
n)‖22 +

ρ1
2
‖X̂ (i)

n − Ẑ(i)
n ‖22+ < Û (i)

n , X̂ (i)
n >

⇔

X̂ (i)
n = argmin

X̂ (i)
n

1

2
‖Ŷ(i)

n − diag(M(i))D̂(i)X̂ (i)
n ‖22 +

ρ1
2
‖X̂ (i)

n − Ẑ(i)
n ‖22+ < Û (i)

n , X̂ (i)
n >

⇔(
D̂(i)Hdiag(M(i) �M(i))D̂(i) + ρ1IK

)
X̂ (i)
n = D̂(i)H(M(i) � Ŷ(i)

n)+

ρ1Ẑ(i)
n − Û (i)

n

(12)

This follows naturally since a�b⇔ diag(a)b⇔ diag(b)a whereM(i) ∈ Rn1×1. Lastly, and in a very similar fashion, the
update for D̂(i) is given as follows:

D̂(i) = argmin
D̂(i)

1

2

N∑
n

‖Ŷ(i)
n − diag(M(i))(D̂(i)X̂ (i)

n)‖2F +
ρ2
2
‖D̂(i) − T̂ (i)‖2F+ (13)

< Ĝ(i), D̂(i) >

⇔ (14)

diag(M(i))

N∑
n

(
diag(M(i))D̂(i)X̂ (i)

n − Ŷ(i)
n

)
X̂ (i)H
n + ρ2D̂(i) = ρ2T̂ (i) (15)

Complexity. Computational Complexity. Now, we discuss the computational complexity of our TCSC formulation as
compared to SCSC. As for the sparse coding step, the most expensive part is solving for

#»X , which involves taking n1 2D
Fourier transforms of size n2×n3 and solving n2n3 linear systems each of size K×K. Therefore, the total cost of updating
the sparse codes can be estimated to be O(n2n3K3) +O(n1n2n3log(n2n3). Similarly, the dictionary learning subproblem
involves solving n2n3 linear systems each of size K ×K. The dictionary learning subproblem is solved completely in the
Fourier domain and no FFTs are required. That brings the total complexity for TCSC toO(n2n3K3)+O(n1n2n3log(n2n3)).
As for the single channel case (SCSC), the linear system can be solved more efficiently by using the Shermon-Morrison
formula. This leads to a computational complexity of O(n2n3K2)+
O(n2n3log(n2n3)) per channel. Since SCSC has to be done on each channel (n1 in total) independently, the total complexity
isO(n1n2n3K2)+O(n1n2n3log(n2n3)). TCSC is computationally more expensive than SCSC (unless n1 � K); however,
it is more attractive memory-wise. As for the memory efficiency, TCSC has n1Kn3n4 parameters in the dictionary and
Kn2n3 in the sparse codes. On the other hand, SCSC has the same number of parameters in the dictionary and n1Kn2n3
parameters for the sparse codes. This means that TCSC is much more memory efficient than SCSC in general.

Memory Complexity. More importantly, TCSC has n1 times fewer parameters as compared to SCSC, thus, making it
much more memory efficient as it encodes higher order correlations.

Table 1. TCSC’s training sparsity with varying λ.
λ 1 10 20

Training Sparsity 98.17% 98.63 % 99.55%

Table 2. SCSC’s training sparsity with varying λ.
λ 1 5 10 20

Training Sparsity 97.77% 98.53% 98.77% 99.22%

Parameters. As for the parameters, we first list the values of λs sued in the training for both methods and their correspond-
ing sparsity level. Tables 1 and 2 list the varying sparsity levels in the training over varying λ for both TCSC and SCSC,
respectively.

Tables (3) and (4) list the optimization parameters used in training and testing for experiments (1) and (2). As for tables
(5) and (6) list the optimization parameters used in training and testing for experiment (3) of video completion.

Table 3. TCSC’s and SCSC’s training parameters for experiments (1) and (2).
ρ1 γ1 ρmax1 ρ2 γ2 ρmax2 Filter size
1 10−2 600 1 10−2 600 11×11

Table 4. SCSC’s and TCSC testing parameters for experiments (1) and (2).
ρ1 γ1 ρmax1 Filter size

SCSC 10−3 10−1 100 11×11
TCSC 10−4 2× 10−2 100 11×11

Table 5. TCSC’s training parameters for the colored video completion experiment.
ρ1 γ1 ρmax1 ρ2 γ2 ρmax2 Filter size N K
1
2 0.015 600 2 10−2 600 11×11 1 100

Table 6. TCSC’s testing parameters for the colored video completion experiment.
ρ1 γ1 ρmax1 filter size N K
1
2 0.015 600 11×11 1 100

Other Regularizes with TCSC. A different set of regularizes that are now made possible with TCSC is the tube norm
‖.‖1,1,F on the sparse codes

#»X . This norm will encourage the optimizer to look for a sparse subset of the K filters to best
reconstruct the tensors. Thus, the tube norm acts as a prior on model (or dictionary) complexity. The overall objective can
now be written as follows:

min
D, #»X

1

2

N∑
n

‖ #»Yn −D ~HO
#»Xn‖2F + λ‖ #»Xn‖1, . . . , 1︸ ︷︷ ︸

d+1

+ β‖ #»Xn‖1,1,F

s.t. ‖
#»

D̂k‖2F ≤ 1 ∀k = 1, . . . ,K

(16)

where ‖ #»X‖1,1,F essentially applies the ‖.‖F norm along all the dimensions {3, dots, d + 1} and applying ‖.‖1,1 on the
resultant matrix. This norm induces the choice of sparse number of filters K which is a model complexity prior. A similar
norm has been for 3rd-order tensors as in [2]. The overall problem has two priors, one over the sparse codes ‖ #»Xn‖1,...,1 and
the other over the model complexity ‖ #»Xn‖1,1,F . The trade off between both priors can be controlled by the parameters λ and
β.

Filters’ Visualization. In here we show an example of how the colored filters learnt evolve through the iterations. The
presented results in figure are from experiment 1 from the main manuscript over the city dataset.
Lastly, we advise the reader to refer to the video to see an example of the complete video reconstruction of experiment 3 from
the main manuscript.

References
[1] F. Heide, W. Heidrich, and G. Wetzstein. Fast and flexible convolutional sparse coding. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 5135–5143, 2015. 2, 3

Figure 1. This figure shows the 100 3D filters learnt in consecutive iterations. The filter sizes are 11× 11.

[2] Z. Zhang, G. Ely, S. Aeron, N. Hao, and M. Kilmer. Novel methods for multilinear data completion and de-noising based on tensor-svd.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3842–3849, 2014. 4

