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1. Additional ablation studies
This section provides additional details for some of the

ablation studies reported in Section 6.
Pooling type. In the context of binary networks, and be-
cause the output is restricted to 1 and -1, max-pooling might
result in outputs full of 1s only. To limit this effect, we
placed the activation function before the convolutional lay-
ers as proposed in [5, 9]. Additionally, we opted to replace
max-pooling with average pooling. However, this leads to
slightly worse results (see Table 1). In practice, we found
that the use of blocks with pre-activation suffices and that
the ratio of 1 and -1 is close to 50% even after max-pooling.

Layer type # parameters PCKh
(Ours, Final) + Average 6.2M 71.9%
(Ours, Final) + Max 6.2M 76%

Table 1: The effect of using different pooling methods when
training our binary network in terms of PCKh-based perfor-
mance on MPII validation set.

With or without ReLU. Because during the binarization
process all ReLU layers are replaced with the Sign func-
tion, one might wonder if ReLUs are still useful for the bi-
nary case. Our findings are in line with the ones reported in
[9]. By adding a ReLU activation after each convolutional
layer, we observe a 2% performance improvement (see Ta-
ble 2), which can be attributed to the added non-linearity,
particularly useful for training very deep architectures.

Layer type # parameters PCKh
(Ours, Final) 6.2M 76%
(Ours, Final) + ReLU 6.2M 77.8%

Table 2: The effect of using ReLU when training our binary
network in terms of PCKh-based performance on MPII val-
idation set.

Performance. In theory, by replacing all floating-point
multiplications with bitwise XOR and making use of the
SWAR (Single instruction, multiple data within a register)
[9, 4], the number of operations can be reduced up to 32x
when compared against the multiplication-based convolu-
tion. However, in our tests, we observed speedups of up
to 3.5x, when compared against cuBLAS, for matrix multi-
plications, a result being in accordance with those reported
in [4]. As GPUs are already available on mobile devices,
we did not conduct experiments on CPUs. However, given
the fact that we used the same method for binarization as
in [9], similar improvements in terms of speed, of the order
of 58x, are to be expected: as the real-valued network takes
0.67 seconds to do a forward pass on a i7-3820 using a sin-
gle core, a speedup close to x58 will allow the system to run
in real-time.

In terms of memory compression, by removing the bi-
ases, which have minimum impact (or no impact at all) on
performance, and by grouping and storing every 32 weights
in one variable, we can achieve a compression rate of 39x
when compared against the single precision counterpart of
Torch. See also Fig. 1.

Figure 1: Memory compression ratio. By binarizing the
weights and removing the biases, we achieve a compres-
sion rate of 39x when compared against the single precision
model.
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2. Additional face alignment results

This section provides additional numerical results on
AFLW-PIFA and AFLW2000-3D.

PIFA [6] RCPR [2] PAWF [7] CALE [1] Ours
8.04 6.26 4.72 2.96 3.02

Table 3: NME-based (%) comparison on AFLW-PIFA eval-
uated on visible landmarks only. The results for PIFA,
RCPR and PAWF are taken from [7].

CALE [1] Ours
4.97 4.47

Table 4: NME-based (%) based comparison on AFLW-
PIFA evaluated on all 34 points, both visible and occluded.

Method [0,30] [30,60] [60,90] Mean
RCPR(300W) [2] 4.16 9.88 22.58 12.21
RCPR(300W-LP) [2] 4.26 5.96 13.18 7.80
ESR(300W) [3] 4.38 10.47 20.31 11.72
ESR(300W-LP) [3] 4.60 6.70 12.67 7.99
SDM(300W) [10] 3.56 7.08 17.48 9.37
SDM(300W-LP) [10] 3.67 4.94 9.76 6.12
3DDFA [11] 3.78 4.54 7.93 5.42
3DDFA+SDM [11] 3.43 4.24 7.17 4.94
Ours 2.47 3.01 4.31 3.26

Table 5: NME-based (%) based comparison on
AFLW2000-3D evaluated on all 68 points, both visi-
ble and occluded. The results for RCPR, ESR and SDM
are taken from [11].

3. Facial part segmentation experiment

To show that the proposed block generalizes well, pro-
ducing consistent results across various datasets and tasks,
in this section, we report the results of an experiment on se-
mantic facial part segmentation. To this end, we constructed
a dataset for facial part segmentation by joining together
the 68 ground truth keypoints (originally provided for face
alignment) to fully enclose each facial component. In total,
we created seven classes: skin, lower lip, upper lip, inner
mouth, eyes, nose and background. Fig. 2 shows an exam-
ple of a ground truth mask.

In particular, we trained the network on the 300W dataset
(approx. 3000 images) and tested it on the 300W compe-
tition testset, both Indoor&Outdoor subsets (600 images),
using the same procedure described in Section 7.

Figure 2: Example of a ground truth mask (right) produced
by joining the 68 ground truth keypoints (left). Each color
denotes one of the seven classes.

Architecture. We reused the same architecture for land-
mark localization, changing only the last layer in order
to accommodate the different number of output channels
(from 68 to 7). We report results for three different networks
of interest: (a) a real-valued network using the original bot-
tleneck block (called “Real, Bottleneck”), (b) a binary net-
work using the original bottleneck block (called “Binary,
Bottleneck”), and (c) a binary network using the proposed
block (called “Binary, Ours”). To allow for a fair compari-
son, all networks have a similar number of parameters and
depth. For training the networks, we used the LogSoftmax
loss [8].
Results. Table 6 shows the obtained results. Similarly to
our human pose estimation and face alignment experiments,
we observe that the binarized network based on the pro-
posed block significantly outperforms a similar-sized net-
work constructed using the original bottleneck block, al-
most matching the performance of the real-valued network.
Most of the performance improvement is due to the higher
representation/learning capacity of our block, which is par-
ticularly evident for difficult cases like unusual poses, oc-
clusions or challenging lighting conditions. For visual com-
parison, see Fig. 4.

Network type pixel acc. mean acc. mean IU
Real, bottleneck 97.98% 77.23% 69.29%
Binary, bottleneck 97.41% 70.35% 62.49%
Binary, Ours 97.91% 76.02% 68.05%

Table 6: Results on 300W (Indoor&Outdoor). The pixel
acc., mean acc. and mean IU are computed as in [8].

4. Visual results
This section provides qualitative results for our human

pose estimation, face alignment and facial part segmenta-
tion experiments.



(a) Fitting examples produced by our binary network on AFLW2000-3D dataset. Notice that our method copes well with extreme poses
and facial expressions and lighting conditions.

(b) Examples of human poses obtained using our binary network. Observe that our method produces good results for a wide variety of
poses and occlusions.

Figure 3: Qualitative results produced by our method on (a) AFLW2000-3D and (b) MPII datasets.
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Figure 4: Qualitative results on 300W (Indoor&Outdoor). Observe that the proposed binarized network significantly outper-
forms the original binary one, almost matching the performance of the real-valued network.


