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Abstract

This is the supplementary material for the paper enti-
tled “Deep Adaptive Image Clustering”. The supplemen-
tary material is organized as follows. Section 1 gives the
mapping function described in Figure 1. Section 2 presents
the proof of Theorem 1. Section 3 details the experimental
settings in our experiments.

1. The Mapping Function Utilized in Figure 1
We assume that li represents the label feature of xi

learned by DAC. Formally, the mapping function utilized
in Figure 1 can be mathematically described as follows:

oi =

[
k∑

h=1

lih
‖ li ‖1

sin

(
2πh

k

)
,

k∑
h=1

lih
‖ li ‖1

cos

(
2πh

k

)]
,

(1)
where oi is the 2-dimensional vector calculated by li, ‖ · ‖1
indicates L1-norm of a vector and k is the number of clus-
ters. For the MNIST [7] test set, k = 10 is satisfied.

2. The Proof of Theorem
In this section, we report the proof of Theorem 1.

For clarity, let Ek denote the standard basis of the k-
dimensional Euclidean space.

THEOREM 1. If the optimal value of Eq. (5) is attained, for
∀ i, j, li ∈ Ek, li 6= lj ⇔ rij = 0 and li = lj ⇔ rij = 1.

Proof. If the optimal value of Eq. (5) is attainted, for ∀ i, j,
we have:

li · lj =

{
1, if rij = 1,

0, if rij = 0,
(2)

where li represents the label features of xi learned by DAC.
For ∀ i, ‖ li ‖2= 1 and lih ≥ 0 (h = 1, · · · , k) are satisfied,
where ‖ · ‖2 implies L2-norm of a vector.

We first demonstrate that |{li}ni=1| = k is satisfied,
where | · | represents cardinality of a set. Then, we ver-

ify that for ∀ i, j, li ∈ Ek, li 6= lj ⇔ rij = 0 and
li = lj ⇔ rij = 1 are satisfied.

First, for arbitrary li, lj , if rij = 1, we have:

li · lj = 1 and ‖ li ‖2=‖ lj ‖2= 1

⇒ ‖ li − lj ‖22 =

k∑
h=1

(lih − ljh)2

=

k∑
h=1

(l2ih + l2jh − 2lihljh)

=

k∑
h=1

l2ih +

k∑
h=1

l2jh − 2

k∑
h=1

lihljh

=‖ li ‖22 + ‖ lj ‖22 −li · lj
= 1 + 1− 2 · 1
= 0.

(3)

That is li = lj is satisfied if rij = 1. Similarly, if rij = 0,
li 6= lj is always satisfied. That is,

rij = 1⇒ li = lj ,

rij = 0⇒ li 6= lj .
(4)

Furthermore, due to ∀ i, ‖ li ‖2= 1, we have the following
proposition if li = lj is satisfied:

rij = li · lj = li · li = 1. (5)

According to Eq. (4) and Eq. (5), we have:

rij = 1⇔ li = lj . (6)

Eq. (6) means that li = lj if and only if xi, xj belong
the same clusters. And rij = 0 ⇒ li 6= lj implies that
li 6= lj if xi, xj belong to different clusters. According to
the aforementioned proof, we have:

|{li}ni=1| = k, (7)

where k represents the number of clusters and is predefined.
Eq. (7) means that {li}ni=1 contains only k diverse vectors.



Then, we verify that ∀ i, li ∈ Ek is satisfied. We assume
that {̂li}ki=1 represents the k different label features corre-
spond to k different clusters. For clarify, we define that
N (A) represents the number of nonzero positive number in
a setA. For example,N ({0, 1, 1,−2}) = 2. We verify that
N
(
{l̂11, l̂12, · · · , l̂1k, l̂21, · · · , l̂kk}

)
= k is invariably

satisfied as follows. According to Eq. (2), we have:

l̂i · l̂j =
k∑

h=1

l̂ih l̂jh =

{
1, i = j,

0, i 6= j.
(8)

Since ∀ i, l̂ih ≥ 0 (h = 1, · · · , k) is satisfied, we have:

l̂i · l̂j =
k∑

h=1

l̂ih l̂jh = 0 (i 6= j),

⇒∀ h, l̂ih l̂jh = 0 (i 6= j),

⇒


1 : ∀ h, ∀ i, l̂ih = 0,

2 : ∀ h, ∃m, 3

{
l̂ih > 0, i = m,

l̂ih = 0, i 6= m.

⇒

1 : ∀ h, N
(
{l̂1h, · · · , l̂ih, · · · , l̂kh}

)
= 0,

2 : ∀ h, N
(
{l̂1h, · · · , l̂ih, · · · , l̂kh}

)
= 1,

⇒ ∀ h, N
(
{l̂1h, · · · , l̂ih, · · · , l̂kh}

)
≤ 1,

⇒N
(
{l̂11, l̂12, · · · , l̂1k, l̂21, · · · , l̂kk}

)
≤ k.

(9)

This means that ∀ h, {l̂ih}ki=1 can not have more than one
element greater than 0. Because of the arbitrariness of h,
{l̂11, l̂12, · · · , l̂1k, l̂21, · · · , l̂kk} has k elements greater
than 0 at most. Furthermore, we have:

∀ i, l̂i · l̂i =
k∑

h=1

l̂ih l̂ih = 1,

⇒∀ i, ∃m, l̂im > 0,

⇒∀ i, N
(
{l̂i1, · · · , l̂ih, · · · , l̂ik}

)
≥ 1,

⇒N
(
{l̂11, l̂12, · · · , l̂1k, l̂21, · · · , l̂kk}

)
≥ k.

(10)

This implies that ∀ i, {l̂ih}kh=1 has at least 1 ele-
ment greater than 0. Because of the arbitrariness of i,
{l̂11, l̂12, · · · , l̂1k, l̂21, · · · , l̂kk} has k elements greater
than 0 at least. According to Eq. (9) and Eq. (10), we have:

N
(
{l̂11, l̂12, · · · , l̂1k, l̂21, · · · , l̂kk}

)
= k. (11)

That is, {l̂11, l̂12, · · · , l̂1k, l̂21, · · · , l̂kk} has
k and only k elements greater than 0. Since
∀ i, h, l̂ih ≥ 0 is satisfied, the remaining elements in
{l̂11, l̂12, · · · , l̂1k, l̂21, · · · , l̂kk} equal 0.

Specifically, we have the following k equations:

l̂1 · l̂1 =
k∑

h=1

l̂1h l̂1h = 1,

l̂2 · l̂2 =
k∑

h=1

l̂2h l̂2h = 1,

· · ·

l̂k · l̂k =
k∑

h=1

l̂kh l̂kh = 1.

(12)

This represents that ∀ i, {l̂i1, l̂i2, · · · , l̂ik} has only an el-
ement greater than 0, and the element equals to 1. That
is, ∀ i, l̂i is a k-dimensional one-hot vector. Because of
∀ i 6= j, l̂i · l̂j = 0, these one-hot vectors are different and
orthogonal. That is, we have:

{̂li}ki=1 = Ek. (13)

Due to |{li}ni=1| = k, according to Eq. (13), we have:

∀ i, li ∈ Ek. (14)

Furthermore, for ∀ i, j, we have:

li 6= lj ⇒ rij = 0. (15)

According to Eq. (4) and Eq. (15), we have:

rij = 0⇔ li 6= lj . (16)

In summary, according to Eq. (6), Eq. (16) and Eq. (14),
for ∀ i, j, li ∈ Ek, li 6= lj ⇔ rij = 0 and li = lj ⇔ rij =
1 are satisfied. The proof is completed.

3. Experimental Settings
In our experiments, the deep learning library Keras [1]

with the Theano [10] backend is utilized to implement
our model (More details can be founded at https:
//github.com/vector-1127/DAC). The ALL-
ConvNets described in [9] is devised to map images to
label features. In terms of image size, we model three
ALL-ConvNets. The details are listed in Table 1. Specifi-
cally, the ReLU activation function [8] is employed in ALL-
ConvNets. Batch normalization [5] is used for normalizing
the inputs of all layers. The normalized Gaussian initializa-
tion strategy [4] is utilized to initialize parameters of Con-
vNets. The RMSProp optimizer [11] is utilized to optimize
the objective functions described in our paper. The learning
rate is 0.001 for the initial phase of training. The batch size
is 32 in the learning procedure. For a reasonable evalua-
tion, we perform 10 random restarts for all experiments and
the average results are employed to compare with the oth-
ers methods. Furthermore, the restraint layer is employed

https://github.com/vector-1127/DAC
https://github.com/vector-1127/DAC


Table 1. The structures of the ALL-ConvNets utilized in our experiments. And c represents number of clusters in experimental datasets.

MNIST [7] CIFAR-10 [6] / CIFAR-100 [6] STL-10 [2] / ILSVRC2012 1K [3]
Input 28× 28 monochrome image Input 32× 32× 3 RGB image Input 96× 96× 3 RGB image

3× 3 conv. 64 BN ReLU 3× 3 conv. 64 BN ReLU 5× 5 conv. 64 BN ReLU
3× 3 conv. 64 BN ReLU 3× 3 conv. 64 BN ReLU 5× 5 conv. 64 BN ReLU

3× 3 conv. 64 with stride 2 BN ReLU 3× 3 conv. 64 with stride 2 BN ReLU 5× 5 conv. 64 with stride 4 BN ReLU
3× 3 conv. 128 BN ReLU 3× 3 conv. 128 BN ReLU 5× 5 conv. 128 BN ReLU
3× 3 conv. 128 BN ReLU 3× 3 conv. 128 BN ReLU 5× 5 conv. 128 BN ReLU

3× 3 conv. 128 with stride 2 BN ReLU 3× 3 conv. 128 with stride 2 BN ReLU 5× 5 conv. 128 with stride 4 BN ReLU
1× 1 conv. c BN ReLU 1× 1 conv. c BN ReLU 1× 1 conv. c BN ReLU

global averaging BN
restraint layer

to restrict label features to satisfy the clustering constraint.
The functions of the restraint layer are formulated as:

Lout
h := exp

Lin
h −max

h
(Lin

h )
, h = 1, · · · , k, (17a)

Lout
h :=

Lout
h

‖ Lout ‖2
, h = 1, · · · , k, (17b)

where Lin, Lout ∈ Rk are the input and output of the re-
straint layer, respectively. Lin

h and Lout
h represent the h-th

element of Lin and Lout, respectively. Note that all the ele-
ments of the output Lout are mapped into [0, 1] by Eq. (17a)
and the output Lout is simultaneously limited to unit vector
by Eq. (17b). In our model, the ALL-ConvNets are always
followed by the restraint layer. That is, ∀ i, li invariably
satisfies the clustering constraint.
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