
One Network to Solve Them All — Solving Linear Inverse Problems using Deep
Projection Models

[Supplemental Materials]

1. Network Architecture
We now describe the architecture of the networks used in

the paper. We use exponential linear unit (elu) [1] as activa-
tion function. We also use virtual batch normalization [6],
where the reference batch size bref is equal to the batch size
used for stochastic gradient descent. We weight the refer-
ence batch with bref

bref+1 . We define some shorthands for the
basic components used in the networks.

• conv(w, c, s): convolution with w × w window size, c
output channels and s stride.

• dconv(w, c, s) deconvolution (transpose of the convo-
lution operation) with w × w window size, c output
channels and s stride.

• vbn: virtual batch normalization.

• bottleneck(same/half/quarter): bottleneck residual
units [5] having the same, half, or one-fourth of the
dimensionality of the input. Their block diagrams are
shown in Figure 1.

• cfc: a channel-wise fully connected layer, whose output
dimension is with same size as the input dimension.

• fc(s): a fully-connected layer with the output size s.

To simply the notation, we use the subscript ve on a compo-
nent to indicate that it is followed by vbn and elu.

Projection network P . The projection network P is com-
posed of one encoder network E and one decoder network,
like a typical autoencoder. The encoder E projects an input
to a 1024-dimensional latent space, and the decoder projects
the latent representation back to the image space. The archi-
tecture of E is as follows.

Input → conv(4, 64, 1)ve → conv(4, 128, 1)ve
→ conv(4, 256, 2)ve → conv(4, 512, 2)ve
→ conv(4, 1024, 2)ve → cfc
→ conv(2, 1024, 1)ve (latent)

(1)

The decoder is a symmetric counter part of the encoder:

latent → dconv(4, 512, 2)ve → dconv(4, 256, 2)ve
→ dconv(4, 128, 1)ve → dconv(4, 64, 1)ve
→ dconv(4, 3, 1) (Output)

(2)

Image-space classifier D. As shown in Figure 3 of the
paper, we use two classifiers — one operates in the image
space Rd and discriminates natural images from the projec-
tion outputs, the other operates in the latent space of P based
on the hypothesis that after encoded by E , a perturbed image
and a natural image should already lie in the same set.

For the image-space classifier D, we use the 50-layer
architecture of [4] but use the bottleneck blocks suggested
in [5]. The detailed architecture is as follows.

Input → conv(4, 64, 1)
→ bottleneck(half ) → {bottleneck(same)}×3

→ bottleneck(half ) → {bottleneck(same)}×4

→ bottleneck(half ) → {bottleneck(same)}×6

→ bottleneck(half ) → {bottleneck(same)}×3

→ vbn & elu → fc(1) (output),
(3)

where {}×n means we repeat the building block n times.

Latent-space classifier D`. The latent space classifier D`
operates on the output of the encoder E . Since the input
dimension is smaller than that ofD, we use fewer bottleneck
blocks than we did in D.

Input → bottleneck(same)×3

→ bottleneck(quarter)
→ {bottleneck(same)}×2

→ vbn & elu
→ fc(1) (output)

(4)

2. More Implementation Details
We now describe the details of the training procedure on

each dataset.

(i) MNIST dataset. The images in the dataset are 28× 28
and grayscale. We train the projector and the classifier

1



vbn

elu

conv(1, c4 , 1)

vbn

elu

conv(3, c4 , 1)

vbn

elu

conv(1, c, 1)

+

Input [N ×N × C]

Output [N ×N × C]

(a) bottleneck(same)

vbn

elu

conv(1, C, 2)conv(1, 2C, 2)

vbn

elu

conv(3, C2 , 1)

vbn

elu

conv(1, C2 , 1)

+

Input [N ×N × C]

Output [N2 ×
N
2 × 2C]

(b) bottleneck(half)

vbn

elu

conv(1, C4 , 2)conv(1, C, 2)

vbn

elu

conv(3, C4 , 1)

vbn

elu

conv(1, C, 1)

+

Input [N ×N × C]

Output [N2 ×
N
2 × C]

(c) bottleneck(quarter)

Figure 1: Block diagrams of the bottleneck components used in the paper. (a) bottleneck(same) preserves the dimensionality
of the input by maintaining the same output spatial dimension and the numger of channels. (b) bottleneck(half) reduces
dimensionality by 2 via halving each spatial dimension and doubling the number of channels. (c) bottleneck(quarter) reduces
dimensionality by 4 via halving each spatial dimension.

(a) Non-smooth D and D` (b) Smooth D and D`

Figure 2: Comparison of ADMM convergence between (a) a projection network trained with indifferentiable D and D` and (b)
the proposed architecture, in which the gradient of D and D` are Lipschitz continuous. We perform scattered inpainting with
box size equal to 6 and a total of 10 boxes on 100 random images in ImageNet dataset. For both cases, we set ρ = 0.05. We
use transparent lines (α = 0.1) in order to show densities.



input

ground truth [3] (PSNR=20.50) proposed (PSNR=23.20)

input

bicubic interpolation [3] proposed

input

bicubic interpolation [3] proposed

input

bicubic interpolation [3] proposed

Figure 3: Results of 4× (on the first three rows) and 8× (on the last row) super-resolution of Freeman and Fattal [3] (on the
third column) and the proposed method (on the last column). All the input images are from [3]. Note that all the images,
except for the one in the first row, do not have ground truth. For the proposed method, we use the projection network trained
on ImageNet dataset and set ρ = 1.0.



networks on the training set and test the results on
the test set. Since the dataset is relatively simpler, we
remove the upper three layers from both D and D`, and
we do not perturb the images by smoothing. We use
batches with 32 instances and train the networks for
80, 000 iterations.

(ii) MS-Celeb-1M dataset. The dataset contains a total of 8
million aligned and cropped face images of 10 thousand
people from different viewing angles. We randomly
select images of 73, 678 people as the training set and
those of 25, 923 people as the test set. We resize the
images into 64× 64. We use batches with 25 instances
and train the network for 10, 000 iterations.

(iii) ImageNet dataset. ImageNet contains 1.2 million train-
ing images and 100 thousand test images on the Internet.
We randomly crop a square image based on the shorter
side of the images and resize the cropped image into
64 × 64. We use batches with 25 instances and train
the network for 68, 000 iterations.

(iv) LabelMe dataset. The dataset also contains images
from the Internet. We do not train a projection network
on the dataset. We use the test set to quantitatively
evaluative the performance of the projection network
trained on ImageNet dataset. Since the images in the
dataset have very high resolution, we first resize the
images to 469 × 387, which is the average resolution
of the images in ImageNet dataset. We then follow the
same procedure as that used with ImageNet to generate
test images.

Image perturbation. We generate perturbed images with
two methods — adding Gaussian noise with spatially vary-
ing standard deviations and smoothing the input images.
We generate the noise by multiplying a randomly sampled
standard Gaussian noise with a weighted mask upsampled
from a low-dimensional mask with bicubic algorithm. The
weighted mask is randomly sampled from a uniform distri-
bution ranging from [0.05, 0.5]. Note that the images are
ranging from [−1, 1]. To smooth the input images, we first
downsample the input images and then use nearest-neighbor
method to upsample the results. The ratio to the downsample
is uniformly sampled from [0.2, 0.95]. After smoothing the
images, we add the noise described above. We only use the
smoothed images on ImageNet and MS-Cele-1M datasets.

3. Convergence of ADMM
Theorem 1 states a sufficient condition for the nonconvex

ADMM to converge. Based on Theorem 1, we use exponen-
tial linear units as the activation functions in D and D` and
truncate their weights after each training iteration, in order
for the gradient of D and D` to be Lipschitz continuous.
Even though Theorem 1 is just a sufficient condition, in prac-
tice, we observe improvement in terms of convergence. We

conduct experiments on scattered inpainting on ImageNet
dataset using two projection networks — one trained with
D and D` using the smooth exponential linear units, and
the other trained with D and D` using the non-smooth leaky
rectified linear units. Note that leaky rectified linear units are
indifferentiable and thus violate the sufficient condition pro-
vided by Theorem 1. Figure 2 shows the root mean square
error of x− z, which is a good indicator of the convergence
of ADMM, of the two networks. As can be seen, using leaky
rectified linear units results in higher and spikier root mean
square error of x − z than using exponential linear units.
This indicates a less stable ADMM process. It shows that
following Theorem 1 can help the convergence of ADMM.

4. Super-resolution results
We compare the proposed method with that of Freeman

and Fattal [3] on 4×- and 8×-super resolution. The results
are shown in Figure 3.

5. Denoising results
We compare the proposed method with the state-of-the-art

denoising algorithm, BM3D [2]. We add Gaussian random
noise with different standard deviation σ (out of 255) to
the test images, which were taken by the author with a cell
phone camera. The value of σ of each image is provided to
BM3D. For the proposed method, we let A = I , the iden-
tity matrix, and set ρ = 3

255σ. To perform the projection
operation on the 384 × 512 images, we use the same pro-
jection network learned from ImageNet dataset and apply
it to 64 × 64 patches. As shown in Figure 4 and Figure 5,
when σ is larger than 40, the proposed method consistently
outperform BM3D.

6. More examples
More results on MS-Celeb-1M and ImageNet dataset are

shown in Figure 6 and Figure 7, respectively.

References
[1] D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate

deep network learning by exponential linear units (elus). arXiv preprint
arXiv:1511.07289, 2015. 1

[2] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Bm3d image
denoising with shape-adaptive principal component analysis. In Signal
Processing with Adaptive Sparse Structured Representations, 2009. 4

[3] G. Freedman and R. Fattal. Image and video upscaling from local
self-examples. ACM TOG, 28(3):1–10, 2010. 3, 4

[4] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In CVPR, 2016. 1

[5] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual
networks. In ECCV, 2016. 1

[6] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen. Improved techniques for training gans. In NIPS, 2016. 1



ground truth input (σ = 40) BM3D (PSNR=26.56) proposed (PSNR=27.47)

0 40 80 120 160 200

σ ([0, 255])

15

20

25

30

35

P
S

N
R

 (
d
B

)

proposed

BM3D

PSNR vs. σ input (σ = 100) BM3D (PSNR=22.54) proposed (PSNR=23.64)

input (σ = 200) BM3D (PSNR=19.13) proposed (PSNR=20.32)

ground truth input (σ = 40) BM3D (PSNR=28.32) proposed (PSNR=29.33)

0 40 80 120 160 200

σ ([0, 255])

20

25

30

35

P
S

N
R

 (
d
B

)

proposed

BM3D

PSNR vs. σ input (σ = 100) BM3D (PSNR=25.06) proposed (PSNR=25.53)

input (σ = 200) BM3D (PSNR=21.40) proposed (PSNR=22.57)

Figure 4: Comparison to BM3D on image denoising



ground truth input (σ = 40) BM3D (PSNR=25.16) proposed (PSNR=26.38)

0 40 80 120 160 200

σ ([0, 255])

18

20

22

24

26

28

30

P
S

N
R

 (
d
B

)

proposed

BM3D

PSNR vs. σ input (σ = 100) BM3D (PSNR=21.51) proposed (PSNR=22.58)

input (σ = 200) BM3D (PSNR=19.01) proposed (PSNR=19.84)

ground truth input (σ = 40) BM3D (PSNR=26.06) proposed (PSNR=26.86)

0 40 80 120 160 200

σ ([0, 255])

15

20

25

30

35

P
S

N
R

 (
d
B

)

proposed

BM3D

PSNR vs. σ input (σ = 100) BM3D (PSNR=22.33) proposed (PSNR=23.30)

input (σ = 200) BM3D (PSNR=19.27) proposed (PSNR=19.97)

Figure 5: Comparison to BM3D on image denoising



compressive
sensing

pixelwise
inpaint,
denoise

blockwise
inpaint

scattered
inpaint

2×super-
resolution

4×super-
resolution

compressive
sensing

pixelwise
inpaint,
denoise

blockwise
inpaint

scattered
inpaint

2×super-
resolution

4×super-
resolution

ground
truth/ input

proposed

`1 prior

specially-
trained
network

Figure 6: More results on MS-Celeb-1M dataset. The PSNR values are shown in the lower-right corner of each image. For
compressive sensing, we test on m

d = 0.1. For pixelwise inpainting, we drop 50% of the pixels and add Gaussian noise with
σ = 0.1. We use ρ = 1.0 on both super resolution tasks.

compressive
sensing

pixelwise
inpaint,
denoise

scattered
inpaint

blockwise
inpaint

super-
resolution

compressive
sensing

pixelwise
inpaint,
denoise

scattered
inpaint

blockwise
inpaint

super-
resolution

ground truth/
input

proposed

`1 prior

specially-
trained
network

ground truth/
input

proposed

`1 prior

specially-
trained
network

Figure 7: More results on ImageNet dataset. Compressive sensing uses m
d = 0.1. For pixelwise inpainting, we drop 50% of

the pixels and add Gaussian noise with σ = 0.1. We use ρ = 0.05 on scattered inpainting and ρ = 0.5 on super resolution.


