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This supplementary material provides the following de-
tails omitted in the main text.

• Sect. A: Details on our proposed zero-shot learning
method (Sect. 2.1 of the main text)

• Sect. B: Details on the experimental setup, including
details on datasets, details on baselines, and hyper-
parameter tuning (Sect. 3.1 of the main text)

• Sect. C: Expanded and additional results on the pre-
dicted exemplars, including another metric for evalu-
ating the quality of predicted exemplars, and larger vi-
sualization (Sect. 3.2 of the main text).

• Sect. D: Additional experimental results on ZSL, in-
cluding expanded Table 3 and Table 4, ZSL with word
vectors as semantic representations, and qualitative re-
sults (Sect. 3.3.1 and 3.3.2 of the main text).

• Sect. E: Generalized zero-shot learning results

• Sect. F: Details and additional results on zero-shot
to few-shot learning experiments, including details on
how to select a subset of peeked unseen classes. (Sect.
3.3.3 of the main text)

• Sect. G: Additional analysis on dimension for PCA
(Sect. 3.3.4 of the main text)

• Sect. H: Details on multi-layer perceptron (Sect. 3.3.4
of the main text)

A. Details on our proposed zero-shot learning
method

SVR formulation for predicting visual exemplars In
Sect. 2.1 of the main text, given semantic representation-
visual exemplar pairs of the seen classes, we learn d support
vector regressors (SVR) with RBF kernel. Specifically, for

each dimension d = 1, . . . , d of vc, SVR is learned based
on the ν-SVR formulation [24]:

min
w,ξ,ξ′,ε

1

2
wTw + λ(νε+

1

S

S∑
c=1

(ξc + ξ′c))

s.t.wTθrbf(ac)− vc ≤ ε+ ξc (1)

vc −wTθrbf(ac) ≤ ε+ ξ′c

ξc ≥ 0, ξ′c ≥ 0,

where θrbf is an implicit nonlinear mapping based on our
kernel. We have dropped the subscript d for aesthetic rea-
sons but readers are reminded that each regressor is trained
independently with its own target values (i.e., vcd) and pa-
rameters (i.e.,wd). We found that the regression error is not
sensitive to λ and set it to 1 in all experiments except for
zero-shot to few-shot learning. We jointly tune ν ∈ (0, 1]
and the kernel bandwidth and finally apply the same set of
hyper-parameters for all the d regressors. Details on hyper-
parameter tuning can be found in Sect. B.3. The resulting
ψ(·) = [wT

1 θ
rbf(·), · · · ,wT

d θ
rbf(·)]T , where wd is from

the d-th regressor.

B. Details on the experimental setup
B.1. Additional information on datasets

We experiment on four benchmark datasets. The Ani-
mals with Attributes (AwA) dataset [17] consists of 30,475
images of 50 animal classes, along with a standard data split
for zero-shot learning — 40 seen classes (for training) and
10 unseen classes. The CUB-200-2011 Birds (CUB) [28]
has 200 bird classes and 11,788 images, while the SUN At-
tribute (SUN) dataset [21] contains 14,340 images of 717
scene categories (20 images from each category). We fol-
low seen/unseen splits in [17] for AwA, and [4] for CUB (4
splits) and SUN (10 splits). We report average results from
all the splits.

On ImageNet [6], we follow the setting in [9, 20, 4].
We use the ILSVRC 2012 1K dataset [23], which contains
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1,281,167 training and 50,000 validation images from 1,000
categories, as data from seen classes. Images of unseen
classes come from the rest of the ImageNet Fall 2011 re-
lease dataset [6] that do not overlap with any of those 1,000
categories. In total, this dataset consists of 14,197,122 im-
ages from 21,841 classes, 20,842 unseen classes of which
are unseen ones. Note that, as mentioned in [4], there is one
class in the ILSVRC 2012 1K dataset that does not appear
in the ImageNet 2011 21K dataset. Thus, we have a total of
20,842 unseen classes to evaluate.

B.2. Details on ZSL baselines

We focus on comparing our method with a recent state-
of-the-art baseline SYNC [4]. Specifically, we adopt the ver-
sion that sets the number of base classifiers to be S (the
number of seen classes), and sets br = ac for r = c (cf.
Sec. 2.2.2 of the main text). Note that this is the version
that has reported results on all four datasets.

SYNC has been shown to outperform multiple strong
baselines under the same setting. In particular, under the
setting of [4] which we adopt in this paper, SYNC outper-
forms SJE [3], ESZSL [22], COSTA [19], and CONSE [20].
For more details, see Table 3 and Table 4 in [4]. Under the
setting of [30] (with ResNet deep features [11] and stan-
dard dataset splits), SYNC is the best performing method
among [17, 2, 9, 26, 20, 3, 22, 33, 31] on average on AwA,
CUB, SUN, and additionally aPY [8] (See Fig. 1 in [30]),
and by far the best performing method on ImageNet among
[2, 9, 26, 20, 3, 22, 31] (See Table 4 in [30]). Note that
Xian et al. [30] recently proposes alternative splits of the
datasets. In some scenarios, SYNC may not perform best
on these splits. We leave further investigation of the perfor-
mance of our ZSL method on these newly proposed splits
for future work.

Besides SYNC, in Table 3 and Table 5 of the main text,
we also include ZSL recognition accuracies of recent ZSL
methods that have not been compared in [4], including
BIDILEL [29], LATEM [31], and CCA [18]. For each of
these methods, we strive to ensure fair comparison in terms
of semantic representations, visual features, and evaluation
metrics.

B.3. Hyper-parameter tuning

There are several hyper-parameters to be tuned in our
experiments: (a) projected dimensionality d for PCA and
(b) λ, ν, and the RBF-kernel bandwidth in SVR. For (a),
we found that the ZSL performance is not sensitive to d
and thus set d = 500 for all experiments. For (b), we per-
form class-wise cross-validation (CV), following previous
work [4, 7, 33], with two exceptions. First, we found λ = 1
works robustly on all datasets for zero-shot learning. Sec-
ond, we fix all the hyper-parameters when we increase the
number of peeked unseen classes (c.f. Sect. 3.3.3 of the

main text) in the case of EXEM (1NN)1.
The class-wise CV can be done as follows. We hold out

data from a subset of seen classes as pseudo-unseen classes,
train our models on the remaining folds (which belong to
the remaining classes), and tune hyper-parameters based on
a certain performance metric on the held-out fold. This sce-
nario simulates the ZSL setting and has been shown to out-
perform the conventional CV in which each fold contains a
portion of training examples from all classes [4].

We consider the following two performance metrics. The
first one minimizes the distance between the predicted ex-
emplars and the ground-truth (average of PCA-projected
validation data of each class) in Rd. We use the Euclidean
distance in this case. We term this measure CV-distance.
This approach does not assume the downstream task at
training and aims to measure the quality of predicted ex-
emplars by its faithfulness.

The other approach maximizes the zero-shot classifi-
cation accuracy on the validation set. This measure can
easily be obtained for EXEM (1NN) and EXEM (1NNS),
which use simple decision rules that have no further hyper-
parameters to tune. Empirically, we found that CV-
accuracy generally leads to slightly better performance.
The results reported in the main text for these two ap-
proaches are thus based on this measure.

On the other hand, EXEM (SYNCO-VS-O ), EXEM
(SYNCSTRUCT ), EXEM (CONSE), and EXEM (LATEM) require
further hyper-parameter tuning. For computational pur-
poses, we use CV-distance for tuning hyper-parameters of
the regressors, followed by the hyper-parameter tuning for
SYNC and CONSE using the predicted exemplars. Since
SYNC and CONSE construct their classifiers based on the
distance values between class semantic representations, we
do not expect a significant performance drop in this case.
(We remind the reader that, in EXEM (SYNCO-VS-O ), EXEM
(SYNCSTRUCT ), EXEM (CONSE), and EXEM (LATEM), the
predicted exemplars are used as semantic representations.)

C. Expanded and additional results on the pre-
dicted exemplars

C.1. Another metric for evaluating the quality of
predicted visual exemplars

Besides the Pearson correlation coefficient used in Ta-
ble 2 of the main text2, we provide another evidence that
predicted exemplars better reflect visual similarities (as de-

1In the experiments where we peek into some unseen classes’ exam-
ples, we find that, for EXEM (1NN), fixing the hyper-parameters tuned on
ZSL (with 0 peeked unseen classes) works robustly for other numbers of
peeked unseen classes. However, this is not the case for SYNC, in which
case we tune the hyper-parameters for different numbers of peeked unseen
classes.

2We treat rows of each distance matrix as data points and compute the
Pearson correlation coefficients between matrices.



Table 1: Overlap of k-nearest classes (in %) on AwA, CUB, SUN.
We measure the overlap between those searched by real exemplars
and those searched by semantic representations (i.e., attributes) or
predicted exemplars. We set k to be 40 % of the number of unseen
classes. See text for more details.

Distances for kNN using AwA CUB SUN
(k=4) (k=20) (k=29)

Semantic representations 57.5 68.9 75.2
Predicted exemplars 67.5 80.0 82.1

fined by real exemplars) than semantic representations. Let
%kNNoverlap(D) be the percentage of k-nearest neighbors
(neighboring classes) using distances D that overlap with
k-nearest neighbors using real exemplar distances. In Ta-
ble 1, we report %kNNoverlap (semantic representation dis-
tances) and %kNNoverlap (predicted exemplar distances).
We set k to be 40% of the number of unseen classes, but we
note that the trends are consistent for different ks. Similar to
the results in the main text, we observe clear improvement
in all cases.

C.2. Larger visualization of the predicted exem-
plars

We provide the t-SNE visualization [27] of the predicted
visual exemplars of the unseen classes for AwA, CUB,
SUN, and ImageNet in Fig. 1, 2, 3, and 4, respectively
— each class is designated a color, with its corresponding
real images/predicted exemplar marked with crosses/circle.
Note that these figures are larger-size versions of Fig. 2 of
the main text. For many of the unseen classes, the predicted
exemplars are well aligned with their corresponding real im-
ages, explaining the superior performance of applying them
for ZSL even though a simple nearest neighbor classifica-
tion is used.

Note that it is the relative distance that is important.
Even when the predicted exemplars are not well aligned
with their corresponding images, they are in many cases
closer to those images than the predicted exemplars of other
classes are. For example, on AwA, we would be able to pre-
dict test images from “orange” class correctly as the closest
exemplar is orange (but the images and the exemplar are not
exactly aligned).

D. Expanded zero-shot learning results

D.1. Expanded main results on small datasets

Table 2 expands Table 3 of the main text to include ad-
ditional baselines. First, we include results of additional
baselines [3, 22, 19] reported in [4]. Second, we report re-
sults of very recently proposed methods that use the more
optimistic metric per-sample accuracy as well as different
types of deep visual features.

Per-sample accuracy is computed by averaging over ac-
curacy of each sample. This is different from per-class ac-
curacy that is computed by averaging over accuracy of each
unseen class. It is likely that per-sample accuracy is the
more optimistic metric of the two, as [30] reports that they
are unable to reproduce results of SSE [33], which uses per-
sample accuracy, with per-class accuracy.

We also note that visual features can affect the perfor-
mance greatly. For example, VGG features [25] of AwA
used in [33, 34, 29] are likely more discriminative than
GoogLeNet features. In particular, BIDILEL [29] reports re-
sults on both features with VGG outperforming GoogLeNet
by an absolute 5.8%. This could explain strong results on
AwA reported in [33, 34, 29]. It would also be interesting to
investigate how GoogLetNet V2 [12] (in additional to per-
sample evaluation metric) used by DEM [32] contributes to
their superior performance on AwA.

Finally, despite the variations in experimental settings,
our method still outperforms all baselines on CUB.

D.2. Expanded ImageNet results

Table 3 expands the results of Table 4 in the main text to
include other previously published results that use AlexNet
features [14] and evaluate on all unseen classes. In all cases,
our method outperforms the baseline approaches.

D.3. Additional ZSL results with word vectors as
semantic representations

In Table 4, we show that we can improve the qual-
ity of word vectors on AwA as well. We use the 1,000-
dimensional word vectors in [10] and follow the same eval-
uation protocol as before. For other specific details, please
refer to [4].

D.4. Qualitative results

Finally, we provide qualitative results on the zero-shot
learning task on AwA and SUN in Fig. 5. For each row,
we provide a class name, three attributes with the highest
strength, and the nearest image to the predicted exemplar
(projected back to the original visual feature space). We
stress that each class that we show here is an unseen class,
and the images are from unseen classes as well. Generally,
the results are reasonable; class names, attributes, and im-
ages generally correspond well. Even when the image is
from the wrong class, the appearance of the nearest image
is reasonable. For example, we predict a hippopotamus ex-
emplar from the pig attributes, but the image does not look
too far from pigs. This could also be due to the fact that
many of these attributes are not visual and thus our regres-
sors are prone to learning the wrong thing [13].



Table 2: Expanded comparison (cf. Table 3 of the main text) to existing ZSL approaches in the multi-way classification accuracies (in %)
on AwA, CUB, and SUN. For each dataset, we mark the best in red and the second best in blue. We include results of recent ZSL methods
with other types of deep features (VGG by [25] and GoogLeNet V2 by [12]) and/or different evaluation metrics. See text for details on
how to interpret these results.

Approach Visual Evaluation AwA CUB SUN
features metric

SSE [33] VGG per-sample 76.3 30.4§ -
JLSE [34] VGG per-sample 80.5 42.1§ -

BIDILEL [29] VGG per-sample 79.1 47.6§ -
DEM [32] GoogLeNet V2 per-sample 86.7 58.3§ -

SJE [3] GoogLeNet per-class 66.3 46.5 56.1
ESZSL [22] GoogLeNet per-class 64.5 34.5 18.7
COSTA [19] GoogLeNet per-class 61.8 40.8 47.9
CONSE† [20] GoogLeNet per-class 63.3 36.2 51.9
BIDILEL [29] GoogLeNet per-class 72.4 49.7§ -
LATEM‡ [31] GoogLeNet per-class 72.1 48.0 64.5

SYNCO-VS-O [4] GoogLeNet per-class 69.7 53.4 62.8
SYNCCS [4] GoogLeNet per-class 68.4 51.6 52.9

SYNCSTRUCT [4] GoogLeNet per-class 72.9 54.5 62.7
EXEM (CONSE) GoogLeNet per-class 70.5 46.2 60.0
EXEM (LATEM)‡ GoogLeNet per-class 72.9 56.2 67.4

EXEM (SYNCO-VS-O ) GoogLeNet per-class 73.8 56.2 66.5
EXEM (SYNCSTRUCT ) GoogLeNet per-class 77.2 59.8 66.1

EXEM (1NN) GoogLeNet per-class 76.2 56.3 69.6
EXEM (1NNS) GoogLeNet per-class 76.5 58.5 67.3

§: on a particular split of seen/unseen classes. †: reported in [4]. ‡: based on the code of [31], averaged over 5 different initializations.

Table 3: Expanded comparison (cf. Table 4 of the main text) to existing ZSL approaches on ImageNet using word vectors of the class
names as semantic representations. For both types of metrics (in %), the higher the better. The best is in red. AlexNet is by [14]. The
number of actual unseen classes are given in parentheses. †: reported in [4].

Test data Approach Visual Flat Hit@K Hierarchical precision@K
K= features 1 2 5 10 20 2 5 10 20

2-hop DEVISE [9] AlexNet 6.0 10.1 18.1 26.4 36.4 15.2 19.2 21.7 23.3
(1,549) CONSE [20] AlexNet 9.4 15.1 24.7 32.7 41.8 21.4 24.7 26.9 28.4

CONSE† [20] GoogLeNet 8.3 12.9 21.8 30.9 41.7 21.5 23.8 27.5 31.3
SYNCo-vs-o [4] GoogLeNet 10.5 16.7 28.6 40.1 52.0 25.1 27.7 30.3 32.1

2-hop SYNCstruct [4] GoogLeNet 9.8 15.3 25.8 35.8 46.5 23.8 25.8 28.2 29.6
(1,509) EXEM (SYNCO-VS-O ) GoogLeNet 11.8 18.9 31.8 43.2 54.8 25.6 28.1 30.2 31.6

EXEM (1NN) GoogLeNet 11.7 18.3 30.9 42.7 54.8 25.9 28.5 31.2 33.3
EXEM (1NNS) GoogLeNet 12.5 19.5 32.3 43.7 55.2 26.9 29.1 31.1 32.0

3-hop DEVISE [9] AlexNet 1.7 2.9 5.3 8.2 12.5 3.7 19.1 21.4 23.6
(7,860) CONSE [20] AlexNet 2.7 4.4 7.8 11.5 16.1 5.3 20.2 22.4 24.7

CONSE† [20] GoogLeNet 2.6 4.1 7.3 11.1 16.4 6.7 21.4 23.8 26.3
SYNCo-vs-o [4] GoogLeNet 2.9 4.9 9.2 14.2 20.9 7.4 23.7 26.4 28.6

3-hop SYNCstruct [4] GoogLeNet 2.9 4.7 8.7 13.0 18.6 8.0 22.8 25.0 26.7
(7,678) EXEM (SYNCO-VS-O ) GoogLeNet 3.4 5.6 10.3 15.7 22.8 7.5 24.7 27.3 29.5

EXEM (1NN) GoogLeNet 3.4 5.7 10.3 15.6 22.7 8.1 25.3 27.8 30.1
EXEM (1NNS) GoogLeNet 3.6 5.9 10.7 16.1 23.1 8.2 25.2 27.7 29.9

All DEVISE [9] AlexNet 0.8 1.4 2.5 3.9 6.0 1.7 7.2 8.5 9.6
(20,842) CONSE [20] AlexNet 1.4 2.2 3.9 5.8 8.3 2.5 7.8 9.2 10.4

CONSE† [20] GoogLeNet 1.3 2.1 3.8 5.8 8.7 3.2 9.2 10.7 12.0
SYNCO-VS-O [4] GoogLeNet 1.4 2.4 4.5 7.1 10.9 3.1 9.0 10.9 12.5

All SYNCSTRUCT [4] GoogLeNet 1.5 2.4 4.4 6.7 10.0 3.6 9.6 11.0 12.2
(20,345) EXEM (SYNCO-VS-O ) GoogLeNet 1.6 2.7 5.0 7.8 11.8 3.2 9.3 11.0 12.5

EXEM (1NN) GoogLeNet 1.7 2.8 5.2 8.1 12.1 3.7 10.4 12.1 13.5
EXEM (1NNS) GoogLeNet 1.8 2.9 5.3 8.2 12.2 3.6 10.2 11.8 13.2



Figure 1: t-SNE [27] visualization of real images (crosses) and predicted visual exemplars (circles) for 10 unseen classes on AWA.
Different colors of symbols denote different unseen classes. Perfect predictions of visual features/exemplars would result in well-aligned
crosses and circles of the same color. Best viewed in color.

Figure 2: t-SNE [27] visualization of real images (crosses) and predicted visual exemplars (circles) for 50 unseen classes on CUB (first
split). Different colors of symbols denote different unseen classes. Perfect predictions of visual features/exemplars would result in well-
aligned crosses and circles of the same color. Best viewed in color.

E. Generalized zero-shot learning results

Conventional zero-shot learning setting unrealistically
assumes that test data always come from the unseen classes.

Motivated by this, recent work proposes to evaluate zero-
shot learning methods in the more practical setting called
generalized zero-shot learning (GZSL). In GZSL, instances
from both seen and unseen classes are present at test time,



Figure 3: t-SNE [27] visualization of real images (crosses) and predicted visual exemplars (circles) for 72 unseen classes on SUN (first
split). Different colors of symbols denote different unseen classes. Perfect predictions of visual features/exemplars would result in well-
aligned crosses and circles of the same color. Best viewed in color.

Figure 4: t-SNE [27] visualization of real images (crosses) and predicted visual exemplars (circles) for 48 randomly sampled un-
seen classes from 2-hop on ImageNet. Different colors of symbols denote different unseen classes. Perfect predictions of visual fea-
tures/exemplars would result in well-aligned crosses and circles of the same color. Best viewed in color.

and the label space is the union of both types of classes. We
refer the reader for more discussions regarding GZSL and
related settings in [5, 30].

We evaluate our methods and baselines using the Area
Under Seen-Unseen accuracy Curve (AUSUC) [5] and re-
port the results in Table 5. Following the same evaluation
procedure as before, our approach again outperforms the

baselines on all datasets.

Recently, Xian et al. [30] proposes to unify the eval-
uation protocol in terms of image features, class semantic
embeddings, data splits, and evaluation criteria for conven-
tional and generalized zero-shot learning. In their protocol,
GZSL is evaluated by the harmonic mean of seen and un-
seen classes’ accuracies. Technically, AUSUC provides a
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Figure 5: Qualitative zero-shot learning results on AwA (left) and SUN (right). For each row, we provide a class name, three attributes
with the highest strength, and the nearest image to the predicted exemplar (projected back to the original visual feature space).

Table 4: ZSL results in the per-class multi-way classification ac-
curacies (in %) on AwA using word vectors as semantic represen-
tations. We use the 1,000-dimensional word vectors in [10]. All
approaches use GoogLeNet as the visual features.

Approach AwA
SYNCO-VS-O [4] 57.5

EXEM (SYNCO-VS-O ) 61.7
EXEM (1NN) 63.5

Table 5: Generalized ZSL results in Area Under Seen-Unseen
accuracy Curve (AUSUC) [5] on AwA, CUB, and SUN. For each
dataset, we mark the best in red and the second best in blue. All
approaches use GoogLeNet as the visual features and calibrated
stacking [5] to combine the scores for seen and unseen classes.

Approach AwA CUB SUN
DAP† [17] 0.366 0.194 0.096
IAP† [17] 0.394 0.199 0.145

CONSE† [20] 0.428 0.212 0.200
ESZSL† [22] 0.449 0.243 0.026

SYNCO-VS-O† [4] 0.568 0.336 0.242
SYNCSTRUCT† [4] 0.583 0.356 0.260

EXEM (SYNCO-VS-O ) 0.553 0.365 0.265
EXEM (SYNCSTRUCT ) 0.587 0.397 0.288

EXEM (1NN) 0.570 0.318 0.284
EXEM (1NNS) 0.584 0.373 0.287

†: results are reported in [5].

more complete picture of zero-shot learning method’s per-
formance, but it is less simpler than the harmonic mean. As
in Sect. B.2, further investigation under this newly proposed
evaluation protocol (both in conventional and generalized
zero-shot learning) is left for future work.

F. Additional details on zero-shot to few-shot
learning experiments

F.1. Details on how to select peeked unseen classes

Denote byB the number of peeked unseen classes whose
labeled data will be revealed. In what follows, we provide
detailed descriptions of how we select a subset of peeked
unseen classes of size B.

Uniform random and heavy (light)-toward-seen random
As mentioned in Sect. 3.1 of the main text, there are differ-
ent subsets of unseen classes on ImageNet according to the
WordNet hierarchy. Each subset contains unseen classes
with a certain range of tree-hop distance from the 1K seen
classes. The smaller the distance is, the higher the semantic
similarity between unseen classes and seen classes. Here,
we consider the following three disjoint subsets:

• 2-hop: 1,509 (out of 1,549) unseen classes that are
within 2 tree-hop distance from the 1K seen classes.
• Pure 3-hop: 6,169 (out of 6,311) unseen classes that

are with exactly 3 tree-hop distance from the 1K seen
classes.
• Rest: 12,667 (out of 12,982) unseen classes that are

with more than 3 tree-hop distance from the 1K seen
classes.

Note that 3-hop defined in Sect. 3.1 of the main text is
exactly 2-hop∪Pure 3-hop, and All is 2-hop∪Pure 3-hop∪
Rest.

For uniform random, we pick from 2-hop/Pure 3-
hop/ Rest the number of peeked unseen classes propor-
tional to their set size (i.e., 1,509/6,169/12,667). That



is, we do not bias the selected classes towards any sub-
set. For heavy-toward-seen random, we pick from 2-
hop/Pure 3-hop/Rest the number of peeked unseen classes
proportional to (16×1,509)/(4×6,169)/(1×12,667). For
light-toward-seen random, we pick from 2-hop/Pure 3-
hop/Rest the number of peeked unseen classes proportional
to (1×1,509)/(4×6,169)/(16×12,667). Given the number
of peeked unseen classes for each subset, we then perform
uniform sampling (without replacement) within each subset
to select the peeked unseen classes. If the number of peeked
unseen classes to select from a subset exceeds the number
of classes of that subset, we split the exceeding budget to
other subsets following the proportion.

DPP Given a ground set of N items (e.g., classes) and
the corresponding N-by-N kernel matrix L that encodes the
pair-wise item similarity, a DPP [16] defines the probability
of any subset sampled from the ground set. The probabil-
ity of a specific subset is proportional to the determinant of
the principal minor of L indexed by the subset. A diverse
subset is thus with a higher probability to be sampled.

For zero-shot to few-shot learning experiments, we con-
struct L with the RBF kernel computed on semantic rep-
resentations (e.g, word vectors) of all the seen and unseen
classes (i.e., S + U classes). We then compute the U-by-U
kernel matrix LU conditional on that all the S seen classes
are already included in the subset. Please refer to [16] for
details on conditioning in DPPs. WithLU , we would like to
select additional B classes that are diverse from each other
and from the seen classes to be the peeked unseen classes.

Since finding the most diverse subset (either fixed-size
or not) is an NP-hard problem [15, 16], we apply a simple
greedy algorithm to sequentially select classes. Denote Qt
as the set of peeked unseen classes with size t and Ut as the
remaining unseen classes, we enumerate all possible subset
of size t + 1 (i.e., Qt ∪ {c ∈ Ut}). We then include c∗

that leads to the largest probability into Qt+1 (i.e., Qt+1 =
Qt ∪ {c∗} and Ut+1 = Ut − {c∗}). We iteratively perform
the update until t = B.

F.2. Additional results on zero-shot to few-shot
learning results

In this section, we analyze experimental results for
EXEM (1NN) in detail. We refer the reader to the setup de-
scribed in Sect. 3.3.3 of the main text, as well as additional
setup below.

F.2.1 Additional setup

We will consider several fine-grained evaluation metrics.
We denote by AKX→Y the Flat Hit@K of classifying test
instances from X to the label space of Y . Since there are
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Figure 6: Combined accuracy AK
U→U vs. the number of peeked

unseen classes for EXEM (1NN). The “squares” correspond to the
upperbound (UB) obtained by EXEM (1NN) on real exemplars.
F@K=1, 5, and 20.

two types of test data, we will have two types of accu-
racy: the peeked unseen accuracy AKP→U and the remain-
ing unseen accuracy AKR→U , where P is the peeked unseen
set, R is the remaining unseen set, and U = P ∪ R is
the unseen set. Then, the combined accuracy AKU→U =
wPAKP→U + wRAKR→U , where wP (wR) is the propor-
tion of test instances in peeked unseen (remaining unseen)
classes to the total number of test instances. Note that the
combined accuracy is the one we use in the main text.

Note also that we follow the evaluation protocol for Ima-
geNet in previous literature by using “per-image” accuracy.
We will also explore “per-class” accuracy and show that we
reach the same conclusion. See Sect F.2.4.

F.2.2 Full curves for EXEM (1NN)

Fig. 6 shows AKU→U when the number of peeked unseen
classes keeps increasing. We observe this leads to improved
overall accuracy, although the gain eventually is flat. We
also show the upperbound: EXEM (1NN) with real exem-
plars instead of predicted ones for all the unseen classes.
Though small, the gap to the upperbound could potentially
be improved with a more accurate prediction method of vi-
sual exemplars, in comparison to SVR (Sect. A).

F.2.3 Detailed analysis of the effect of labeled data
from peeked unseen classes

Fig. 7 expands the results in Fig. 6 by providing the weighed
peeked unseen accuracy wPAKP→U and the weighted re-
maining unseen accuracy wRAKR→U . We note that, as the
number of peeked unseen classes increases, wP goes up
while wR goes down, roughly linearly in both cases. Thus,
the curves go up for the top row and go down for the bottom
row.

As we observe additional labeled data from more peeked
unseen classes, the weighed peeked unseen accuracy im-
proves roughly linearly as well. On the other hand, the
weighed remaining unseen accuracy degrades very quickly
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Figure 7: (Top) Weighted peeked unseen accuracy wPAK
P→U

vs. the number of peeked unseen classes. (Bottom) Weighted re-
maining unseen wRAK

R→U accuracy vs. the number of peeked
unseen classes. The weight wP (wR) is the number of test in-
stances belonging to P (R) divided by the total number of test in-
stances. The evaluation metrics are F@1 (left) and F@20 (right).
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Figure 8: Accuracy on test instances from the remaining un-
seen classes when classifying into the label space of remaining
unseen classes only AK

R→R vs. the number of peeked unseen
classes. ZSL trains on labeled data from the seen classes only
while PZSL (ZSL with peeked unseen classes) trains on the the
labeled data from both seen and peeked unseen classes. The eval-
uation metrics are F@1 (left) and F@20 (right).

for F@1 but slower for F@20. This suggests that the im-
provement we see (over ZSL performance) in Fig. 4 of
the main text and Fig. 6 is contributed largely by the fact
that peeked unseen classes benefit themselves. But how do
peeked unseen classes exactly affect the remaining unseen
classes?

The above question is tricky to answer. There are two
main factors that contribute to the performance on remain-
ing unseen test instances. The first factor is the confusion
among remaining classes themselves, and the second one
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Figure 9: Accuracy on test instances from the remaining unseen
classes when classifying into the label space of unseen classes
AK

R→U vs. the number of peeked unseen classes. ZSL trains on
labeled data from the seen classes only while PZSL (ZSL with
peeked unseen classes) trains on the the labeled data from both
seen and peeked unseen classes. Note that these plots are the un-
weighted version of those at the bottom row of Fig. 7. The evalu-
ation metrics are F@1 (left) and F@20 (right).

is the confusion with peeked unseen classes. We perform
more analysis to understand the effect of each factor when
classifying test instances from the remaining unseen setR.

To remove the confusion with peeked unseen classes, we
first restrict the label space to only the remaining unseen
classes R. In particular, we consider AKR→R and com-
pare the method in two settings: ZSL and PZSL (ZSL with
peeked unseen classes). ZSL uses only the training data
from seen classes while PZSL uses the training data from
both seen and peeked unseen classes. In Fig. 8, we see that
adding labeled data from peeked unseen classes does help
by resolving confusion among remaining unseen classes
themselves, suggesting that peeked unseen classes inform
other remaining unseen classes about visual information.

In Fig. 9, we add the confusion introduced by peeked
unseen classes back by letting the label space consist of both
P and R. That is, we consider AKR→U . For Flat Hit@1,
the accuracy is hurt so badly that it goes down below ZSL
baselines. However, for Flat Hit@20, the accuracy drops
but still higher than ZSL baselines.

Thus, to summarize, adding peeked unseen classes has
two benefits: it improves the accuracies on the peeked
unseen classes P (Fig. 7 (Top)), as well as reduces the
confusion among remaining unseen classes R themselves
(Fig. 8). It biases the resulting classifiers towards the peeked
unseen classes, hence causing confusion between P and R
(Fig. 9). When the pros outweigh the cons, we observe over-
all improvement (Fig. 6). Additionally, when we use less
strict metrics, peeked unseen classes always help (Fig. 9).

F.2.4 Results on additional metric, additional method,
and additional rounds

We further provide experimental results on additional met-
ric: per-class accuracy and on multiple values of K in Flat



Hit @K (i.e., K ∈ {1, 2, 5, 10, 20}); additional method:
EXEM (1NNS). We also provide results for EXEM (1NN)
averaged over multiple rounds using heavy-toward-seen
random, light-toward-seen random, and uniform random to
select peeked unseen classes to illustrate the stability of
these methods.

Fig. 10 and 11 summarize the results for per-image
and per-class accuracy, respectively. For both figures, each
row corresponds to a ZSL method and each column corre-
sponds to a specific value of K in Flat Hit@K. In particular,
from top to bottom, ZSL methods are EXEM (1NN), EXEM
(1NNS), and SYNCO-VS-O. From left to right, Flat Hit@K =
1, 2, 5, 10, and 20.

Where to peek? No matter which type of accuracy is con-
sidered, we observe similar trends previously seen in the
main text. heavy-toward-seen is preferable for strict met-
rics (i.e., small K) while clustering is preferable for flexible
metrics (i.e., large K), for all zero-shot learning algorithms.

Comparison between ZSL methods No matter which
type of accuracy is considered, we observe similar trends
seen in the main text. EXEM (1NNS), under the same Flat
Hit@K and subset selection method and number of peeked
unseen classes, slightly outperforms EXEM (1NN). Both
EXEM (1NN) and EXEM (1NNS) outperform SYNCO-VS-O.

Per-class accuracy vs. Per-image accuracy Per-class
accuracy is generally lower than per-image accuracy. This
can be attributed to two factors. First, the average number
of instances per class in 2-hop is larger than that in Pure
3-hop and Rest (see Sect. F.1 for the definition)3. Second,
the per-class accuracy in 2-hop is higher than that in Pure
3-hop and Rest4. That is, when we compute the per-image
accuracy, we emphasize the accuracy from 2-hop. The first
factor indicates the long-tail phenomena in ImageNet, and
the second factor indicates the nature of zero-shot learning
— unseen classes that are semantically more similar to the
seen ones perform better than those that are less similar.

Stability of peeked unseen class random selection For
all experimental results on PZSL above and in the main
text, we use a single round of randomness for heavy-toward-
seen, light-toward-seen, and uniform random (see Sect. F.1
for details). That is, given budget B, we apply a fixed set
of peeked unseen classes sampled according to a particular
random strategy to all ZSL methods. To illustrate the sta-
bility of these random methods, we consider EXEM (1NN)

3On average, 2-hop has 696 instances/class, Pure 3-hop has 584 in-
stances/class, and Rest has 452 nstances/class

4For example, the per-class accuracy of EXEM (1NN) in 2-hop/Pure
3-hop/Rest is 12.1/3.0/0.8 (%) at Flat Hit@1 under 1,000 peeked unseen
classes selected by heavy-toward-seen random.

Table 6: Comparison on using predicted and real exemplars for
the peeked classes for few-shot learning (in %). EXEM (1NN) with
heavy-toward-seen random for peeking 1,000 classes is used.

Exemplar Flat Hit@K
type 1 2 5 10 20

Predicted 3.1 4.6 7.5 10.8 15.6
Real 3.1 4.6 7.5 10.8 15.6

with 10 rounds of randomness and provide the mean and
standard deviation of accuracy in Fig. 12.

The results follow the same trends as shown in Fig. 10
and Fig. 4 of the main text; the standard deviation is small
when compared to the gap among different random selec-
tion methods. This observation suggests that, for random
subset selection, the distribution of peeked unseen classes
is more important than specific peeked unseen classes be-
ing selected.

Real or predicted exemplars for peeked classes What
should we use as visual exemplars for peeked classes?
There are two options. The first option is to use their real
exemplars based on (a few) peeked instances. The second
option is to use their predicted visual exemplars (where real
exemplars are used to learn the predictor). As the train-
ing error of the (non-linear) regressor is quite low, we ob-
serve an unnoticeable difference in zero-shot performance
between the two options. For instance, in Table 6, the two
set of numbers match when the number of peeked classes is
1,000.

G. Additional analysis on dimension for PCA
To better understand a trade-off between running time

and ZSL performance, we expand Table 7 of the main text
with more values for projected PCA dimensions d. In Ta-
ble 7, we see that our approach is extremely robust. With
d=50, it still outperforms all baselines (cf. Table 3) on
AwA and SUN; with d=100, on all 3 datasets. Moreover,
our method works reasonably over a wide range of (large
enough) d on all datasets.

H. Details on multi-layer perceptron
We follow the notations defined at the beginning of

Sect. 2 and Sect. 2.1 of the main text. Similar to [32], our
multi-layer perceptron is of the form:

1

S

S∑
c=1

‖vc −W2 · ReLU(W1 · ac)‖22 + λ ·R(W1,W2),

(2)
where R denotes the `2 regularization, S is the number of
seen classes, vc is the visual exemplar of class c, ac is the
semantic representation of class c, and the weightsW1 and
W2 are parameters to be optimized.
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Figure 10: Combined per-image accuracy vs. the number of peeked unseen classes for EXEM (1NN), EXEM (1NNS), and SYNC. The
evaluation metrics are, from left to right, Flat Hit@1 ,2 ,5, 10, and 20. Five subset selection approaches are considered.
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Figure 11: Combined per-class accuracy vs. the number of peeked unseen classes for EXEM (1NN), EXEM (1NNS), and SYNC. The
evaluation metrics are, from left to right, Flat Hit@1, 2, 5, 10, and 20. Five subset selection approaches are considered.



Table 7: Accuracy of EXEM (1NN) on AwA, CUB, and SUN when predicted exemplars are from original visual features (No PCA) and
PCA-projected features (PCA with d = 1024, 500, 200, 100, 50, 10).

Dataset No PCA PCA PCA PCA PCA PCA PCA
name d = 1024 d = 1024 d = 500 d = 200 d = 100 d = 50 d = 10
AwA 77.8 76.2 76.2 76.0 75.8 76.5 73.4
CUB 55.1 56.3 56.3 58.2 54.7 54.1 38.4
SUN 69.2 69.6 69.6 69.6 69.3 68.3 55.3

Following [32], we randomly initialize the weights W1

and W2, and set the number of hidden units for AwA and
CUB to be 300 and 700, respectively. We use Adam opti-
mizer with a learning rate 0.0001 and minibatch size of S.
We tune λ on the same splits of data as in other experiments
with class-wise CV (Sect. B.3). Our code is implemented
in TensorFlow [1].
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for EXEM (1NN). Five subset selection approaches are compared.
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are, from top to bottom, Flat Hit@1, 5, and 20.
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