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Training Method λ
d 1

NYU d n al 1
Subset d n al M 1

d n dl 100
d n dl M 100

NYU d n al F 1
Full d n al F M 1

d n dl F 100
d n dl F M 100

Table 1. λ used in the NYU experiments.

Experiment RMSE RMSE log RMSE absrel sqrrel LS
Pair (log) (s.inv) RMSE

d vs. d n dl 0.000000 0.000006 0.000026 0.005282 0.000063 0.000000
d F vs. d n dl F 0.059211 0.866385 0.820841 0.749617 0.167718 0.000017

Table 2. P-values for each pair of NYU experiments obtained from
the paired t-test.

1. More Details on Implementation
Here we provide additional details on the choice of pa-

rameters used in our experiments.
For all NYU images, we use the one ground truth focal

length shared by all images. For all SNOW images, we
assume the same focal length as NYU. Focal length is not
needed to predict depth at test time. In training, for SNOW
images focal length is often available in EXIF, which could
be used to further improve our results.

The parameter λ in Eq.(1) of the paper is selected by per-
forming hyper-parameter optimization on a held-out valida-
tion set. They are listed in Tab. 1

The parameter τ in Eq.(3) of the paper equals ln(1.02).
It is chosen to be consistent with the threshold used in [4] to
generate the ground truth relative depth. We use the same τ
for all experiments including those on SNOW.

2. Paired t-test on NYU Results
We quantify uncertainty in our NYU result table using

the paired t-test, comparing the performances of two meth-
ods on a per-image basis. The results are in Tab. 2. For
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Crop Method RMSE RMSE log RMSE absrel sqrrel LS
(log) (s.inv) RMSE

d 8.09 2.54 2.34 0.43 3.77 6.53
Eigen d n al 7.63 1.91 1.75 0.37 2.97 6.04

d n dl 7.39 1.72 1.60 0.36 2.79 5.70
Godard [3] 5.74 0.24 0.22 0.13 1.14 5.17
d 7.45 2.58 2.41 0.43 3.51 6.30

Garg d n al 6.86 1.75 1.63 0.36 2.58 5.69
d n dl 6.64 1.82 1.71 0.35 2.51 5.40
Godard [3] 5.21 0.22 0.20 0.11 0.89 4.73

Table 3. Metric depth error evaluated on the KITTI dataset.

Method WKDR WKDR= WKDR 6=

d 25.96% 21.57% 26.93%
d n al 22.42% 19.80% 23.18%
d n dl 25.22% 22.02% 26.07%
Godard [3] 25.84% 26.17% 26.21%

Table 4. Ordinal error evaluated on the KITTI dataset.

d vs. d n dl, all the p-value are less than 0.01, showing
that the improvement from normals is significant. For d F
vs. d n dl F, the p-value for the LS-RMSE metric is also
less than 0.01, again showing that the improvement in LS-
RMSE is significant.

3. Experiment on KITTI

For completeness, we provide experimental results on
the KITTI dataset. Following [3], we evaluate our meth-
ods on two sub-regions of the KITTI test images (i.e., the
Garg Crop and Eigen Crop as described in [3]), and use the
test/train split of [2].

The relative depth annotations for both training and test-
ing are generated in the same way as described in [4]. As the
ground truth surface normals are not provided in the official
KITTI dataset, we train on the surface normals generated by
Eq.(6) of the paper, and only provide qualitative results of
surface normal prediction on the test set. During training,
we provide 5,000 surface normal annotations per image.

We test and compare these 3 models: (1) a model trained
with relative depth only (d); (2) a model trained with rel-
ative depth and surface normals using the angle-based loss
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Figure 1. Qualitative results of the KITTI test set.

(d n al); (3) a model trained with relative depth and surface
normals using depth-based loss (d n dl). We use the same
network as used in the NYU experiment, with τ = ln(1.02)
and λ = 1. The input to our network is a 128 × 416 im-
age and the output is a depth map of the same size. Al-
though ground truth depth values are only available on the
lower part of the image, we feed the entire image into the
network as is done in [2]. All the metric errors except the
LS RMSE are calculated by first normalizing the depth map
to have the same mean and standard variation as the train-
ing set. However, some depth maps may contain negative
depth value after normalization, and we replace those neg-
ative values with the minimum of the non-negative depth
values of that depth map when calculating the RMSE (log)
and log RMSE (s.inv) metric. For comparison, we also
show the state-of-the-art depth-prediction results of Godard
et al. [3], which exploits epipolar geometry constraints to
train monocular depth-prediction networks (we show the re-
sults from their Ours resnet pp model, which is their best
performing model).

We show the results in Tab. 3, 4. Some qualitative re-
sults are shown in Fig. 1. Models trained with surface
normals (d n al, d n dl) consistently outperform the depth-
only model (d) in both metric error and ordinal error. Train-
ing with depth-based loss yields the most significant im-
provement in metric error while the improvement in ordinal
error is the most significant for the angle-based loss model.
These results once again show that surface normals can help
improve depth predictions in the absence of ground truth

depth in training.
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Figure 2. Some examples of the very difficult cases where the surface normal is hard to infer from the image. Point A is on tree leaves,
which are small and cluttered. Point B is on a dark background where nothing can be seen clearly. In these case, the worker can indicate
that the surface normal is hard to tell. Please view in color.
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Figure 3. Qualitative results of the NYU test set. Here we show example outputs of the networks trained with or without surface normals
on the NYU Subset.
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Figure 4. Additional qualitative results on SNOW produced by our model and Bansal [1]. The left two columns visualize some predicted
normal vectors from the two methods. The other two columns are the full normal maps.


