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1. Extensions

To play the “preservation” game and aim to maximize a
class score rather than minimize it, eq. 6 becomes:

min
m∈[0,1]Λ

λ1‖m‖1 + λ2

∑
u∈Λ

‖∇m(u)‖ββ

− Eτ [fc(Φ(x0(· − τ),M))], (1)

where the jitter parameter τ ∈ Unif(−α, α)2 is drawn from
a 2D uniform random variable, x0(·−τ) denotes the original
image x0 translated by τ , M(v) =

∑
u gσm

(v/s− u)m(u)
is the upsampled mask, and gσm

is a 2D Gaussian kernel.

To minimize multiple class scores, as we do in the weak
localization experiment, eq. 6 becomes:

min
m∈[0,1]Λ

λ1‖1−m‖1 + λ2

∑
u∈Λ

‖∇m(u)‖ββ

+ Eτ [
∑
c∈C

fc(Φ(x0(· − τ),M))], (2)

where C is the set of classes we are interested in minimiz-
ing.

2. Mask Initialization
We experimented with a few different ways to initialize

our masks (e.g. uniformly random from [0,1], all set to 0.5,
0, or 1). We found it was best to initialize the mask with
a mask that roughly covered the object enough to suppress
the target score. Thus, we initialized our masks to be cir-
cular and centered on the image and chose the smallest ra-
dius [0:5:175 pixels] that suppressed the normalized score
by at least 99% (or preserved the normalized score by at
least 99% for the preservation game). If none did so, the
mask was set to fully perturb the whole image initially. Fi-
nally, the initial circular mask is blurred by gσm=10 to soften
the disc edge so as not to trigger artifacts and down-sampled
to the final mask size.

3. Comparison Visualization Details
When visualizing and testing other heatmap methods, we

use the following settings, usually per their original default
implementations:

1. Gradient [6]: Backpropagate error signal to the input
data layer and take the inf-norm (this is calculated by
taking the maximum value over the color channels per
pixel from the absolute value of the gradient, | dzdx |).

2. Guided Backprop [8]: Same as gradient, except use
[8]’s modified ReLU backwards rule (i.e., for ReLU
layers, apply a ReLU to the backprogated signal).
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3. Excitation backprop [11]: Backpropagate signal to
“pool2:3x3 s2” layer in Googlenet [9] using the exci-
tation backprop rule and take the sum of the backprop-
agated signal over the feature channels.

4. Contrast excitation backprop [12]: Same as excitation
backprop, except compute and subtract out the con-
trastive signal at “pool5:7x7 s1” in Googlenet and take
the sum of the backpropagated signal over the feature
channels after it has been passed through a ReLU.

5. Grad-CAM [5]: Backpropagate gradient to “incep-
tion 5b:output” in Googlenet, apply global aver-
age pooling (GAP), compute the sum of activations
weighted by the GAP of the gradient.

6. Occlusion [10]: Following [5]’s of occlusion size, we
use 35 × 35 mean-pixel value occlusion masks with
stride 8. We normalize the resulting change in logit
score heatmap by the number of masks applied per spa-
tial location.

For all techniques, we backpropagate the error signal (or
measure the normalized change in output score in the case
of occlusion [10]) with respect to pre-softmax activations,
as per convention for the above methods.

4. Pointing game implementation details
The results from our re-implementation differ slightly

from that of [11] because we resized all images to be
224 × 224 (we confirmed this source of difference by get-
ting the same results when using [11]’s Pointing Game code
with resized images). We also average the localization of
the maximum points if there are more than one because our
method clips a mask to [0,1]; the other methods aren’t af-
fected by this averaging because they don’t saturate. Fi-
nally, due to limited computational power, we tested the
Pointing Game on a subset of the COCO validation set
(N = 20, 721, about 50% of all validation images), in
which we use at most the first 400 images per class. Without
the last two modifications, results for center, gradient [6],
guided backprop [8], and the excitation backprop [11] meth-
ods are within 1% of those reported in table 2 of the main
text.

4.1. Occlusion variants

For blur occlusion, we used circles with diameter 35,
softened their edges by applying a Gaussian blur to them
(σ = 10), and used these circular masks to apply a blur per-
turbation to the image (σ = 10). This is in contrast to the
standard occlusion implementation, which uses squares (in
our case, with side lengths of 35) with hard edges to apply
a constant perturbation (i.e., mean image pixel value). As
we did for standard occlusion, we used a stride of 28 pixels
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Figure 1. (Left) Empirical distribution of object area. (Middle)
Log of empirical distribution. (Right) Log-Normal distribution
(µ = 7.5060, σ = 1.2848) fit to empirical distribution (left).

as we did which we slide our disc masks. We hypothesized
that our blur occlusion should perform better because it is
less likely to cause artifacts thanks to its blur perturbation
and mask softening.

For variable occlusion, we drew samples for the radius
and x- and y-center coordinates of circular masks that are
then smoothed by blurring (σ = 10) and used to apply a
blur perturbation (σ = 10) (this is similar to blur occlu-
sion except that the masks are variable is size and randomly
placed). Then, out of the top 10% most score-suppressing
masks, we chose the one which had the smallest radius and
used its center as our point (instead of generating a heatmap
and picking its maximum point). We hypothesized that if
a small, highly-suppressive mask was a good indication of
saliency, variable occlusion should perform well.

To determine the distributions from which to sample
the radii and center coordinates, we computed the empir-
ical distribution of the object area and bounding box x-
and y-center coordinates on a held-out COCO training set,
which consisted of 100 images for each of the 80 classes
(N = 8000). For a given image and class, we calculated
the mean object area over all instances; fig. 1 shows this em-
pirical distribution (left) and that a log normal distribution
with µ = 7.5060 and σ = 1.2848 fits well to the empirical
distribution of object areas (right). We use this distribu-

tion A to draw radii R as follows: R =
√

A
π . We accu-

mulate the x- and y- center coordinates of bounding boxes
for all annotated objects in the heldout set; fig. 2 shows the
empirical distribution (left) and that a normal distribution
(µ = 116.0759, σ = 47.5054) fits well to the empirical
distribution of the y-coordinate (right). Due to the sharp,
center peakiness and otherwise flatness of the empirical dis-
tribution for the center x-coordinate, a normal distribution
did not fit it well and instead we use a uniform distribution
so as to avoid a strong center bias. From these distribu-
tions, we drew the x- and y- center coordinates. We used
the same number of masks used in standard and blur occlu-
sion (N = 784 = 28× 28 stride).

5. Experimental results using default hyper-
parameters to minimize one target class

For the weak localization experiment, using the default
hyper-parameter settings to minimize the target class re-
sulted in a accuracy rate of 41.9% on the training held-out
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Value Energy Mean
α∗ 0.25 0.90 1.0

Val Err 48.4% 46.1% 46.0%

Table 1. Weakly supervised localization results on validation set
(N = 50, 000) when using value, energy, and mean thresholding
when the default hyper-parameters to minimize the ground truth
class was used.

set (N = 5000) when using mean thresholding (α∗ = 1.0).
By comparison, the top-5 hyper-parameter setting yielded
a held-out accuracy rate of 39.6% (α∗ = 0.5, Table 1 in
main text). Thus, only the top-5 hyper-parameter setting
was used for the weak localization experiments. Table 1
shows the localization results on the validation set of using
the default hyper-parameter settings to minimize the target
class; there results have 3-4% higher than those for using
the top-5 hyper-parameter setting.

For the pointing game, using the default settings to min-
imize the target class resulted in the following precision
rates, which are 1% and 2% lower than that of the top-5
hyper-parameters setting reported in the main text: 36.40%
(all) and 28.21% (difficult).

6. More examples of learned masks
6.1. Randomly selected examples

Figure 3 shows randomly selected examples of learned
masks and compares them to visualizations from other
saliency methods.

6.2. Examples of the top5 hyperparameter setting

For the weakly supervised object localization task, in or-
der to get more object coverage, we minimized the softmax
scores of the top 5 predicted classes (eq. (2)). Furthermore,
in order to get sharper, less coarsely smoothed masks, we
used λ1 = 10−3 and β = 2.0 and otherwise default param-
eters. Figure 4 shows randomly selected examples of masks
using the default settings and the settings used for the weak
localization experiment.

Figure 5 shows all 50 ImageNet [4] validation examples
for “sunglasses” with the mask learned using default param-
eters overlaid, while fig. 6 shows those examples with the

mask learned using the weak localization parameters, which
minimize the top 5 predicted classes and thus show what
the network was “distracted” by. Because “sunglasses” had
the second lowest validation classification rate of 8%, our
method illustrates in fig. 5 that the network has learned
a reasonable understanding of the object by highlighting
glasses in most images.

6.3. Examples for Different Network Architectures

Figure 8 compares masks learned by our method on
the Alexnet [1], VGG-16 [7], and Googlenet [9] archi-
tectures. The default hyper-parameters, which were se-
lected for Googlenet, were used, with the exception that for
Alexnet, the mask scaling factor was equal to 7.56̄ in order
to rescale its slightly larger default input size of 227×227 to
the down-sampled 32× 32 mask size. Qualitatively, masks
for all three networks generally identify the same or sim-
ilar parts of the image, though the Googlenet results look
slightly better; this is likely due to the fact that the hyper-
parameters used were tuned to Googlenet.

6.4. Examples For Visualizing Different Layers

For visualizing intermediate layers, we used the follow-
ing parameters: N = 300 iterations, learning rate γ =
10−1, TV β = 3. The mask is not upsampled, blurred,
or jittered (δ = 1, gσm=0, τ = 0) and constant perturbation,
which equivalent to drop-out in intermediate layers, is used
instead of blur.

For AlexNet [1], we used the following parameters to
visualize these layers: pool1 (27 × 27): L1 λ1 = 10−4,
TV λ2 = 10−2, pool2 (13 × 13): λ1 = 5 × 10−3, λ2 =
10−2, relu3 (13 × 13): λ1 = 5 × 10−3, λ2 = 10−2, relu4
(13 × 13): λ1 = 5 × 10−3, λ2 = 10−2, ahd pool5 (6 × 6):
λ1 = 10−2, λ2 = 10−3.

For VGG-16 [7], we used the following layers and pa-
rameters: pool1 (112 × 112): λ1 = 5 × 10−5, λ2 =
10−2, pool2 (56 × 56): λ1 = 10−4, λ2 = 10−2, pool3
(28 × 28): λ1 = 10−4, λ2 = 10−2, pool4 (13 × 13):
λ1 = 5 × 10−3, λ2 = 10−2, ahd pool5 (7 × 7): λ1 =
10−2, λ2 = 10−3.

Not that the default parameters were chosen for a 28×28
mask; the above parameters are correlated to activation size,
which equals mask size for these layers. As the activation
size decreases, a stronger L1 regularization (λ1) and weaker
TV norm regularization (λ2) are needed.

6.5. Examples Comparing the Preservation vs.
Deletion Loss

Figure 9 shows masks learned using the preservation
loss (eq. (1)) and the deletion loss (main text, eq. (6)). Qual-
itatively, the deletion loss results in better heat maps; this is
because there is always some positive evidence for the tar-
get class that can be deleted, whereas for a difficult image,
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Figure 3. Comparison with other saliency methods (images randomly selected). From left to right: original image with ground truth
bounding box; learned mask subtracted from 1 (our method); gradient [6]; guided backprop [8, 3]; contrastive excitation backprop [11];
grad-CAM [5]; and occlusion [10].
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Figure 4. Comparison between two mask settings, e.g. minimizing target class and top 5 predicted classes, with the latter using λ1 = 10−3

and β = 2.0 (images randomly selected).
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Figure 5. 50 ImageNet [4] “sunglasses” validation examples with mask using default settings overlaid (Googlenet [9] “sunglasses” softmax
probability and whether it was classified correctly (C) or incorrectly (I) above). Despite having a validation classification accuracy of 8%,
these visualizations show that the network had a reasonable concept of a pair of “sunglasses” by consistently highlighting glasses in most
images.
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Figure 6. 50 ImageNet [4] ‘sunglasses’ validation examples with mask overlaid using localization parameters (minimize top 5 predicted
classes, λ1 = 10−3, β = 2.0). In comparison to fig. 5, this figure shows what the network was “distracted” by.
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Figure 7. Comparison among the following network architectures: AlexNet [1], VGG-16 [7], and GoogLeNet [9] (images randomly
selected). Masks were generated using default parameters, except the mask scaling factor was equal to 7.56̄ for AlexNet in order to rescale
its slightly larger default input size of 227× 227 to the down-sampled 32× 32 mask size.
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Figure 8. Visualizing different layers. (Left) AlexNet [1]; (Right) VGG-16 [7]. See section 6.4 for parameters used; masks are subtracted
from 1, so red corresponds to an original mask value close to 0 (e.g., where deletion occurs).

in which the target score is already quite low in the original
image, it may be difficult to amplify the existing positive
evidence using a mask without introducing artifacts.

6.6. Failure Examples on Imagenet

The masks for the “vestment” and “passenger car” im-
ages in rows 1 and 5 of fig. 3 cover only a small portion of
the object while the top-5 mask for “picnic fence” in fig. 4,
left row 5 highlights grass.

Another rare failure case occurs when numerical insta-
bilities cause the optimization to not converge; interest-
ingly, fig. 8 left row 1 shows an example of a particularly
difficult “holster” image, in which the “holster” is hard to
discern even for a human, for which numerical instability
affects masks learned for several architectures. This sug-

gests that convergence failure may not just be a failure case
but may also provide useful insight to the quality of an im-
age. Instability is also observed in a few masks learned us-
ing preservation loss (fig. 9).

6.7. Examples on COCO

Figure 10 shows learned masks on the COCO dataset [2];
qualitatively, the COCO masks look better for simpler im-
ages (e.g., those more similar to ImageNet) and worse for
small and/or occluded objects, though it does surprisingly
well for very small traffic lights.

7. Testing hypotheses: animal parts saliency
Figure 11 shows the mean intensity around each foot and

eye keypoint for each of the 76 animal classes and demon-
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Figure 9. Comparison between using the preservation loss, where the target class score is maximized, versus the deletion loss, where the
target class score is minimized (the deletion heat maps are subtracted from 1 to visually match the preservation ones).



bird bicycle traffic light

bus traffic light bus

airplane bicycle car

Figure 10. Examples on COCO using default parameters, with clear failure cases in the last row and pairs of images with different objects
in the last two rows. Ground truth segmentations are highlighted in different color blocks per object instance while the mask is overlaid
using the jet color scheme.

N Mean Avg Feet:Eyes Ratio±SE
Small Mam. 3 4.03±0.25

Dog 8 3.70±0.50
Medium Mam. 14 3.49±0.32

Bird 21 3.03±0.04
Large Mam. 23 2.53±0.17
Amph/Rept 7 1.96±0.23

Table 2. Quantification of how much eyes are more salient than
feet for images of different animal categories.

strates that for all classes, eyes were on average more salient
than feet (recall that a lower intensity in a deletion mask de-
notes a more salient region whose deletion suppresses the
target class’ softmax score). Table 2 shows the mean aver-
age feet-to-eyes ratio for groups of animals.
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