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1. CIFAR-100 Augmentation

The parameters for data augmentation when training
ResNet-20 [6] on CIFAR100 [7] are listed as follows. And
the first three parameters are for changing contrast and
brightness of input images (please see [ ] for the algorithm
of changing image contrast and brightness).

e min_contrast = 0.8: minimum contrast multiplier
(min «).

e mazx_contrast = 1.2: maximum contrast multiplier
(max «).

e maz_brightness_shift = 5: maximum brightness
shift in positive and negative directions (3).

e max_color_shift = 5: maximum color shift along
RGB axes.

o apply_probability = 0.5: how often each transforma-
tion is applied.

e zero-padding with 2 pixels for each side and crop with
32 x 32 for training.

2. DualNet From ResNet-32&ResNet-56

Besides ResNet-20, we further evaluate DualNet based
on the deeper ResNet [0], e.g., with 32 layers and 56
layers (denoted as ResNet-32&ResNet-56, referring to
the third-party implementation available at [2]). ResNet-
32&ResNet-56, as well as the corresponding DualNet (de-
noted as DNR32&DNRS56), are also trained on the aug-
mented CIFAR-100 and the experimental results are shown
in Table 1. The performance comparison demonstrates that
DualNet performs well with ResNet-32 and ResNet-56. For
DNRS56, although the joint finetuning does not helps a lot,
the performance (75.57%) is still 2.76% higher than the
base model (72.81%).

Table 1. The top-1 accuracy on the augmented CIFAR-100
achieved by the standard deep model (ResNet-32&ResNet-56)
and the corresponding DualNet (DNR32&DNRS6). The first
row shows the results of ResNet-32&ResNet-56 and the rest are
all achieved by DNR32&DNRS6. After the iterative training, we
respectively evaluate the performance of the Fused Classifier and
the weighted average of three classifiers, while the latter one can
help validate the necessity of the joint finetuning.

Training
Model DNR32 | DNRS56
standard deep model (ResNet-32&ResNet-56) | 69.72% 72.81%
iterative training (Fused Classifier) 73.06% | 75.24%
iterative training (classifier average) 73.31% | 75.53%
Jjoint finetuning (classifier average) 73.51% | 75.57%

3. More Experimental Analyses

In Section 4.4 of manuscript, we have presented some
experimental analyses about the design of DualNet. Here
more experimental analyses are provided to further validate
its robustness and superiority.

3.1. Comparison to global finetuning

In the manuscript we have tried to finetune the DualNet
globally with the auxiliary classifiers removed and the re-
sults are given in Section 4.4. Here we further try to fine-
tune the whole DualNet globally regardless of training time
and memory cost. NIN [9] is chosen as the base network be-
cause of its small size, and then the whole DNI is globally
finetuned from scratch on CIFAR100 without data augmen-
tation. Finally we get 69.36% on CIFARI100 by averaging
the output of three classifiers, which is still lower than that
achieved by taking the proposed procedure (69.76%), al-
though much more computation cost is introduced.

3.2. Comparison to model ensemble

In addition, we compare our DualNet to the model en-
semble technique [8], i.e., an ensemble of networks trained
independently and then averaged for their final prediction,
which is also taken for comparison with HD-CNN in [ 1].



Table 2. Performance comparison with model ensemble tech-
nique on CIFAR100 (without augmentation) and Stanford
Dogs. All results are reported in top-1 mean accuracy.

Dataset Dataset | Stanford
Model CIFART00 Model Dogs
NIN(Single) 66.91% VGG(Single) 74.11%
NIN(Ensemble) 70.18 % VGG(Ensemble) 75.77%
DNI(Single) 69.76% DNV(Single) 77.56%

In practice, we train two networks of the same architec-
ture independently and then average their output for predic-
tion to compare with DualNet which consists of two sub-
networks. Due to the randomness in training, the resulting
parameters of independent networks are different, and mod-
el ensemble can help improve the accuracy for recognition.
The performance comparison is shown in Table 2 and the
results are reported on CIFAR100 and Stanford Dogs. On
CIFAR100, DNI is a little inferior but approximate to the
ensemble of NIN. On Stanford Dogs, DNV achieves higher
accuracy than the ensemble of VGGNet. As stated in [11],
the model ensemble technique requires training and eval-
uation of independent models, while our DualNet as well
as HD-CNN is end-to-end in a unified framework, which is
orthogonal to the model ensemble technique.

3.3. Fusion at various layers

In this subsection, we take the experiments of fusion
at various layers and the results are reported on VG-
GNet and Stanford Dogs. The output of Fused Classifi-
er after the iterative training is taken for the evaluation.
Then we get the following results when fusing at differ-
ent layers: pool5-77.03%, pool4-74.72%, pool3-73.94%,
pool2-73.68%, pooll-73.85%. The performance compari-
son shows that fusing at pool5 makes sense in this case.

3.4. Fusion weights analysis

In our experiments the fusion weights of SI Classifier
and S2 Classifier are empirically set to 0.3. Here we try oth-
er fusion weights especially when the weights of S/ Classi-
fier and S2 Classifier are larger than that of Fused Classifi-
er. The experiments are taken on DNV and Stanford Dogs
and the output of Fused Classifier after the iterative train-
ing is taken for the evaluation. Then we get the following
results when using different loss weights: 0.3-77.03%, 0.5-
76.39%, 1.0-75.45%, 2.0-74.94%. The results indicate that
the fusion weights used in the manuscript are reasonable.

3.5. Evaluation of N extractors

In this work, we coordinate two extractors to learn com-
plementary features and it would be interesting to extend to
N (more than two) extractors. Here we take a simple exper-
iment on NIN and CIFAR100 (without data augmentation)

and explore the cooperation of N extractors. Specifically,
the N extractors are added gradually and the N-stream fea-
tures are summed into the Fused Classifier for recognition.
In the training, the parameters of the newly added N-th ex-
tractor are updated with the rest N-1 fixed, while an aux-
iliary classifier is appended to the N-th extractor to make
the features produced by it discriminative alone. To enable
a fair comparison, the output of Fused Classifier is taken
for the evaluation through the experiments. Then we get the
following results when using different number of extractors:
One-66.91% (baseline), Two-69.01%, Three-69.87%, Four-
69.74%. The results show that the performance of four ex-
tractors is slightly worse than that of three extractors, indi-
cating that more extractors are not always beneficial. More
advanced strategy is needed to coordinate the N extractors,
which is considered for our future work.

4. Datasets to Evaluate DualNet

The recent work, DDN [10], which is directly related to
ours, mainly conducts experiments on CIFAR100. While in
our work, besides CIFAR100, DualNet is also evaluated on
the widely-used Standford Dogs and UEC FOOD-100. For
the large-scale ImageNet, training from scratch is very time-
consuming and requires multiple GPUs in some cases, e.g.,
the training of ResNet on ImageNet requires parallel com-
puting of up to 8 GPUs [3]. In contrast, all the networks in
the manuscript can be trained/tested on a Tesla K40 GPU.
Here we choose NIN-ImageNet' which is relatively fast for
training as the base network, and evaluate the effectiveness
of DualNet on the ILSVRC-2012 ImageNet dataset. NIN-
ImageNet greatly reduces the number of parameters com-
pared to AlexNet [8] but reports similar accuracy on Ima-
geNet. The experimental results are shown in Table 3 and
reported on the validation set. It can be seen that, DualNet
from NIN-ImageNet achieves 1.29% higher top-1 accuracy
than the base network on the large-scale ImageNet.

In summary, the proposed DualNet performs well with
different DCNN architectures and various datasets, and re-
ports performance superior to the baselines in all cases. The
improvement in certain cases may be not that significant but
convincing, indicating that DualNet can really help acquire
more discriminative image representation by coordinating
two DCNNS to learn complementary features, which is the
key idea of this work.

5. Visualization of Network Architectures

In this section, we provide the network architectures that
are evaluated in the manuscript, including CaffeNet, VG-

IThe architectures of NIN-ImageNet (NIN for ImageNet here) and
NIN-CIFAR100 (NIN for CIFAR100 used in the manuscript) are a little
different, both of which are available in the Caffe Model Zoo [4]. Please
refer to [4] for more details.



Table 3. Performance comparison on the ILSVRC-2012 Ima-
geNet between NIN-ImageNet and the corresponding DualNet.
All results are reported in top-1 mean accuracy.

Dataset
Model ILSVRC-2012 ImageNet
NIN-ImageNet 59.15%
DualNet from NIN-ImageNet 60.44 %

GNet, NIN (for CIFAR100), ResNet-20 and their corre-
sponding DualNet. All the network structures are visualized
using the tools provided by [5]. Best viewed electronically.

5.1. CaffeNet (Figure 1)

5.2. DualNet From CaffeNet (Figure 2)
5.3. VGGNet (Figure 3)

5.4. DualNet From VGGNet (Figure 4)
5.5. NIN (Figure 5)

5.6. DualNet From NIN (Figure 6)

5.7. ResNet-20 (Figure 7)

5.8. DualNet From ResNet-20 (Figure 8)



CaffeNet DualNet From CaffeNet
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Figure 1. The architecture of CaffeNet. Figure 2. The architecture of DualNet From CaffeNet.



VGGNet DualNet From VGGNet
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Figure 3. The architecture of VGGNet. Figure 4. The architecture of DualNet From VGGNet.



NIN
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Figure 5. The architecture of NIN.

DualNet From NIN
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Figure 6. The architecture of DualNet From NIN.
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DualNet From ResNet
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Figure 7. The architecture of ResNet-20.

Figure 8. The architecture of DualNet From ResNet-20.
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