
Supplementary Materials: Arbitrary Style Transfer in Real-time
with Adaptive Instance Normalization

Xun Huang1 Serge Belongie1,2
1Department of Computer Science, Cornell University 2Cornell Tech

{xh258,sjb344}@cornell.edu

1. Loss curves during training
In Fig. 1 we show the content and style loss in training

and test set. The training loss is post-processed with median
filtering of window size 2000 and the test loss is computed
every 2000 iterations. We did not observe much overfitting:
the training and test loss trend are almost the same. We
conjecture that the task is so difficult that the network with
millions of parameters still underfit. With a more expressive
architecture, the results might be further improved.

0 50000 100000 150000 200000
Iteration

0

0

1

1

2

2

3

Lo
ss

Style (train)
Content (train)
Style (test)
Content (test)

Figure 1. Loss curves during training.

2. Model and training details
Model. Tab. 1 shows the detailed architecture of the de-

coder. All the convolutional layers are of stride 1, filter size
3 × 3, and “valid” padding of type reflection. Note that
we do not use any normalization layers. The VGG-19 net-
work [4] used as the encoder and loss network is a normal-
ized version as in Gatys et al. [1]. In addition to the normal-
ization conducted by Gatys et al., we also replace all zero
paddings with reflection paddings.

Training. The convolutional weights are initialized with
Xavier [2] initialization. The style weight λ is set to 0.1.
We use Adam [3] optimizer with β1 = 0.9 and β2 = 0.999.
The learning rate is initialized to α0 = 10−4 and decays as
follows:

αt =
α0

1 + kt

where k = 5 × 10−5 and t ≤ T is the current number of
iterations. We train the network for T = 300, 000 iterations

which takes roughly one week on a single Pascal Titan X.
However, visually appealing results can be obtained with
only 30, 000 iterations.

Layer type # Channels
Conv-ReLU 256
Upsampling 256
Conv-ReLU 256
Conv-ReLU 256
Conv-ReLU 256
Conv-ReLU 128
Upsampling 128
Conv-ReLU 128
Conv-ReLU 64
Upsampling 64
Conv-ReLU 64

Conv 3

Table 1. Architecture of the decoder.

3. More examples

See Fig. 3 in the next page.

4. Effect of using different layers

Fig. 2 shows the effect of using different layers to per-
form AdaIN. Using relu4 1 obtains perceptually better
results than earlier layers.

relu1 1 relu2 1 relu3 1 relu4 1

Figure 2. Effect of using different layers. Original content and
style images can be found in Fig. 7 of the main paper.

1



Figure 3. More examples of style transfer. Each row shares the same style while each column represents the same content. As before, the
network has never seen the test style and content images.



References
[1] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer

using convolutional neural networks. In CVPR, 2016. 1
[2] X. Glorot and Y. Bengio. Understanding the difficulty of train-

ing deep feedforward neural networks. In AISTATS, 2010. 1
[3] D. Kingma and J. Ba. Adam: A method for stochastic opti-

mization. In ICLR, 2015. 1
[4] K. Simonyan and A. Zisserman. Very deep convolutional net-

works for large-scale image recognition. In ICLR, 2015. 1


