

End-to-end Face Detection and Cast Grouping in Movies Using Erdős-Renyi Clustering: Supplementary Material

SouYoung Jin¹, Hang Su¹, Chris Stauffer², and Erik Learned-Miller¹

¹College of Information and Computer Sciences, University of Massachusetts, Amherst

²Visionary Systems and Research (VSR)

Table 1: Clustering performance comparisons on various data sets. The leftmost shows our **rank1count** by setting a threshold automatically. For the rest of the columns, we show f-scores using optimal (oracle-supplied) thresholds. (**1st place**,**2nd place**,**3rd place**).

			Verification system + Link-based clustering algorithm					Other clustering algorithms					
			Rank-1 Count (automatic threshold)		Rank-1 Count	L2	Template Adaptation [2]	Rank-Order Distance [10]	Rank-Order Distance [10]	Affinity Propagation [4]	DBSCAN [3]	Spectral Clustering [8]	
Test set													
Video	BBT s01 [1]	e01	.7145	.7225	.7386	.7170	.8064	.7278	.1707	.4137	.6884	.3776	.2166
		e02	.7414	.7671	.7561	.7520	.7154	.6537	.1593	.3216	.6147	.2337	.2018
		e03	.8428	.8552	.8329	.8192	.6660	.6367	.2130	.2985	.6578	.2366	.2131
		e04	.7602	.7690	.7151	.7687	.6364	.7001	.2118	.2886	.6520	.2156	.1847
		e05	.8217	.8250	.7420	.7858	.6330	.7035	.2335	.2444	.5980	.1812	.2120
		e06	.7563	.7578	.6342	.7247	.5577	.5588	.1615	.1948	.5806	.1511	.1387
	Buffy s05 [1]	e01	.6634	.6938	.4950	.6902	.3819	.5935	.1711	.1755	.5762	.1439	.1285
		e02	.5582	.6645	.3315	.5452	.2800	.5837	.1705	.1185	.5892	.1151	.1087
		e03	.5378	.5479	.3735	.5569	.2390	.4595	.1346	.1322	.4566	.1077	.1063
		e04	.4203	.4859	.3523	.4549	.3049	.5171	.1643	.1445	.5273	.1187	.1179
		e05	.6235	.6952	.5064	.6739	.3073	.5640	.1435	.1740	.5540	.1390	.1251
		e06	.5932	.6923	.3001	.5856	.2807	.5455	.1765	.1009	.5071	.1041	.0995
Hannah [6]			.6436	.6813	.2581	.3620	.4123	.3955	.1886	.1230	.3344	.1240	.1052
Image	LFW [5]		.8532	.8943	.8498	.3735	.5989	.5812	.3197	.0117	.2538	.4520	.3133

1. Performance Comparisons

In Table 1, except for the leftmost column of results, we report the best $F_{0.5}$ scores using optimal (oracle-supplied) thresholds for both the distance threshold (a parameter that is part of all of the algorithms) and the number of clusters (a parameter required by a subset of the algorithms, such as k-nearest neighbors). **The comparison shows that the proposed link-based clustering algorithm with rank-1 counts outperforms the state-of-the-art on all four data sets in $F_{0.5}$ score.** Unlike other clustering algorithms, our proposed approach can scale from small clustering problems (5-8 subjects in BBT) to large clustering problems (5730 subjects in LFW).

In Table 2, we also report traditional measures (pairwise precision, pairwise recall, and F-measure) on the subset of true positive tracklets that are given to each algorithm.

References

- [1] M. Bauml, M. Tapaswi, and R. Stiefelhagen. Semi-supervised learning with constraints for person identification in multimedia data. In *Proc. CVPR*, 2013. [1](#), [2](#)
- [2] N. Crosswhite, J. Byrne, C. Stauffer, O. M. Parkhi, Q. Cao, and A. Zisserman. Template adaptation for face verification and identification. In *Face and Gesture*, 2017. [1](#), [2](#)
- [3] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. *KDD*, 96(34):226–231, 1996. [1](#), [2](#)
- [4] B. J. Frey and D. Dueck. Clustering by passing messages between data points. *Science*, 315(5814):972–976, 2007. [1](#), [2](#)
- [5] G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. In *The Workshop on Faces in Real-Life Images at ECCV*, 2008. [1](#), [2](#)

Table 2: Clustering performance comparisons evaluated on traditional measures. (**1st place**,**2nd place**,**3rd place**).

		Verification system + Link-based clustering algorithm					Other clustering algorithms						
		Rank-1 Count (automatic threshold)	Rank-1 Count	L2	Template Adaptation [2]	Rank-Order Distance [10]	Rank-Order Distance based Clustering [10]	Affinity Propagation [4]	DBSCAN [3]	Spectral Clustering [8]	Birch [9]	MiniBatch KMeans [7]	
Test set													
Video	BBT s01 [1]	e01	.8226	.8486	.8613	.8364	.9669	.8732	.2108	.4880	.8193	.4572	.2666
		e02	.9289	.9726	.9550	.9502	.9046	.8456	.2034	.4094	.7785	.2997	.2584
		e03	.9664	.9908	.9903	.9299	.7873	.7751	.2437	.4404	.7810	.3158	.2775
		e04	.8985	.9188	.8638	.9107	.8040	.8387	.2592	.3831	.8207	.2863	.2385
		e05	.9769	.9940	.9215	.9275	.7879	.8067	.2600	.3866	.7638	.2713	.3354
		e06	.9795	.9876	.8605	.9644	.7828	.7041	.2085	.3930	.8408	.2859	.2538
Video	Buffy s05 [1]	e01	.8487	.8727	.7016	.8626	.5447	.7249	.1997	.2968	.7512	.2123	.1835
		e02	.6737	.7665	.4904	.6730	.4104	.6384	.1883	.2386	.8196	.1932	.1764
		e03	.6872	.7159	.5492	.7404	.3731	.6094	.1538	.2494	.6392	.1725	.1638
		e04	.5496	.5847	.4983	.5586	.4570	.6789	.1854	.2603	.6943	.1854	.1733
		e05	.8205	.8301	.6682	.8173	.4751	.6663	.1573	.3536	.7686	.2279	.2019
		e06	.7509	.8555	.4281	.7083	.4489	.6224	.2071	.1925	.7188	.1727	.1583
Image	Hannah [6]		.7634	.8081	.3526	.4766	.5249	.4955	.2272	.1723	.4227	.1648	.1387
	LFW [5]		.8532	.8943	.8498	.3735	.5989	.5812	.3197	.0117	.2538	.4520	.3133

- [6] A. Ozerov, J.-R. Vigouroux, L. Chevallier, and P. Pérez. On evaluating face tracks in movies. In *Proc. ICIP*, 2013. [1](#), [2](#)
- [7] D. Sculley. Web-scale k-means clustering. In *Proc. WWW*, pages 1177–1178. ACM, 2010. [1](#), [2](#)
- [8] J. Shi and J. Malik. Normalized cuts and image segmentation. *TPAMI*, 22(8):888–905, 2000. [1](#), [2](#)
- [9] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: an efficient data clustering method for very large databases. In *SIGMOD*. ACM, 1996. [1](#), [2](#)
- [10] C. Zhu, F. Wen, and J. Sun. A rank-order distance based clustering algorithm for face tagging. In *Proc. CVPR*, 2011. [1](#), [2](#)