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Table 1: Clustering performance comparisons on various data sets. The leftmost shows our rank1count by setting a threshold
automatically. For the rest of the columns, we show f-scores using optimal (oracle-supplied) thresholds. (1st place,

,3rd place).
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report the best Fj 5 scores using optimal (oracle-supplied)
thresholds for both the distance threshold (a parameter that
is part of all of the algorithms) and the number of clusters
(a parameter required by a subset of the algorithms, such
as k-nearest neighbors). The comparison shows that the
proposed link-based clustering algorithm with rank-1
counts outperforms the state-of-the-art on all four data
sets in F{y 5 score. Unlike other clustering algorithms, our
proposed approach can scale from small clustering prob-
lems (5-8 subjects in BBT) to large clustering problems
(5730 subjects in LFW).

In Table 2, we also report traditional measures (pairwise
precision, pairwise recall, and F-measure) on the subset of
true positive tracklets that are given to each algorithm.
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Table 2: Clustering performance comparisons evaluated on traditional measures. (1st place, ,3rd place).
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