Inferring and Executing Programs for Visual Reasoning
Supplementary Material

Justin Johnson!

Judy Hoffman'! Li Fei-Fei!

!Stanford University

1. Implementation Details

We will release code to reproduce our experiments. We
also detail some key implementation details here.

1.1. Program Generator

In all experiments our program generator is an LSTM
sequence-to-sequence model [O]. It comprises two learned
recurrent neural networks: the encoder receives the natural-
language question as a sequence of words, and summarizes
the question as a fixed-length vector; the decoder receives
this fixed-length vector as input and produces the predicted
program as a sequence of functions. The encoder and de-
coder do not share weights.

The encoder converts the discrete words of the input
question to vectors of dimension 300 using a learned word
embedding layer; the resulting sequence of vectors is then
processed with a two-layer LSTM using 256 hidden units
per layer. The hidden state of the second LSTM layer at the
final timestep is used as the input to the decoder network.

At each timestep the decoder network receives both the
function from the previous timestep (or a special <START>
token at the first timestep) and the output from the encoder
network. The function is converted to a 300-dimensional
vector with a learned embedding layer and concatenated
with the decoder output; the resulting sequence of vectors
is processed by a two-layer LSTM with 256 hidden units
per layer. At each timestep the hidden state of the second
LSTM layer is used to compute a distribution over all pos-
sible functions using a linear projection.

During supervised training of the program generator, we
use Adam [7] with a learning rate of 5 x 10~* and a batch
size of 64; we train for a maximum of 32,000 iterations,
employing early stopping based on validation set accuracy.

1.2. Execution Engine

The execution engine uses a Neural Module Network [2]
to compile a custom neural network architecture based on
the predicted program from the program generator. The in-
put image is first resized to 224 x 224 pixels, then passed

Bharath Hariharan?

Laurens van der Maaten?

C. Lawrence Zitnick?> Ross Girshick?
’Facebook Al Research

Layer Output size
Input image 3 x 224 x 224
ResNet-101 [4] conv4_6 1024 x 14 x 14
Conv(3 x 3,1024 — 128) | 128 x 14 x 14
ReLU 128 x 14 x 14
Conv(3 x 3, 128 — 128) 128 x 14 x 14
ReLLU 128 x 14 x 14

Table 1. Network architecture for the convolutional network used
in our execution engine. The ResNet-101 model is pretrained
on ImageNet [8] and remains fixed while the execution engine is
trained. The output from this network is passed to modules repre-
senting Scene nodes in the program.

through a convolutional network to extract image features;
the architecture of this network is shown in Table 1.

The predicted program takes the form of a syntax tree;
the leaves of the tree are Scene functions which receive vi-
sual input from the convolutional network. For ground-truth
programs, the root of the tree is a function corresponding
to one of the question types from the CLEVR dataset [6],
such as count or query_shape. For predicted programs
the root of the program tree could in principle be any func-
tion, but in practice we find that trained models tend only to
predict as roots those function types that appear as roots of
ground-truth programs.

Each function in the predicted program is associated
with a module which receives either one or two inputs; this
association gives rise to a custom neural network architec-
ture corresponding to each program. Previous implemen-
tations of Neural Module networks [1, 2] used different
architectures for each module type, customizing the mod-
ule architecture to the function the module was to perform.
In contrast we use a generic design for our modules: each
module is a small residual block [4]; the exact architectures
used for our unary and binary modules are shown in Ta-
bles 2 and 3 respectively.

In initial experiments we used Batch Normalization [5]
after each convolution in the modules, but we found that this
prevented the model from converging. Since each image in
a minibatch may have a different program, our implemen-

Index Layer Output size Layer Output size
1) Previous module output | 128 x 14 x 14 Final module output 128 x 14 x 14
2) Conv(3 x 3,128 — 128) | 128 x 14 x 14 Conv(l x 1, 128 — 512) 512 x 14 x 14
3) ReLU 128 x 14 x 14 ReLU 512 x 14 x 14
“) Conv(3 x 3,128 — 128) | 128 x 14 x 14 MaxPool(2 x 2, stride 2) 512 x 7T x 7
5) Residual: Add (1) and (4) | 128 x 14 x 14 FullyConnected(512 - 7 - 7 — 1024) 1024
©6) ReLU 128 x 14 x 14 ReLU 1024
Table 2. Architecture for unary modules used in the execution FullyConnected(1024 — |A|) |A|

engine. These modules receive the output from one other module,
except for the special Scene module which instead receives input
from the convolutional network (Table 1).

Index Layer Output size
)] Previous module output | 128 x 14 x 14
2 Previous module output | 128 x 14 x 14
3) Concatenate (1) and (2) 256 x 14 x 14
@) Conv(l x 1,256 — 128) | 128 x 14 x 14
) ReLU 128 x 14 x 14
©6) Conv(3 x 3,128 — 128) | 128 x 14 x 14
@) RelLLU 128 x 14 x 14
(8) Conv(3 x 3,128 — 128) | 128 x 14 x 14
) Residual: Add (5) and (8) | 128 x 14 x 14
(10) ReLU 128 x 14 x 14

Table 3. Architecture for binary modules in the execution

engine. These modules receive the output from two other
modules. The binary modules in our system are intersect,
union, equal_size, equal_color, equal material,
equal_shape, equal_integer, less_than, and
greater_than.

tation of the execution engine iterates over each program in
the minibatch one by one; as a result each module is only
run with a batch size of one during training, leading to poor
convergence when modules contain Batch Normalization.

The output from the final module is passed to a classifier
which predicts a distribution over answers; the exact archi-
tecture of the classifier is shown in Table 4.

When training the execution engine alone (using either
ground-truth programs or predicted programs from a fixed
program generator), we train using Adam [7] with a learn-
ing rate of 1 x 10~* and a batch size of 64; we train for a
maximum of 200,000 iterations and employ early stopping
based on validation set accuracy.

1.3. Joint Training

When jointly training the program generator and execu-
tion engine, we train using Adam with a learning rate of
5 x 107° and a batch size of 64; we train for a maximum
of 100,000 iterations, again employing early stopping based
on validation set accuracy.

We use a moving average baseline to reduce the variance
of gradients estimated using REINFORCE; in particular our
baseline is an exponentially decaying moving average of

Table 4. Network architecture for the classifier used in our ex-
ecution engine. The classifier receives the output from the final
module and predicts a distribution over answers \A.

past rewards, with a decay factor of 0.99.

1.4. Baselines

We reimplement the baselines used in [6]:

LSTM. Our LSTM baseline receives the input question
as a sequence of words, converts the words to 300-
dimensional vectors using a learned word embedding layer,
and processes the resulting sequence with a two-layer
LSTM with 512 hidden units per layer. The LSTM hidden
state from the second layer at the final timestep is passed
to an MLP with two hidden layers of 1024 units each, with
ReLU nonlinearities after each layer.

CNN+LSTM. Like the LSTM baseline, the
CNN+LSTM model encodes the question using learned
300-dimensional word embeddings followed by a two-
layer LSTM with 512 hidden units per layer. The image is
encoded using the same CNN architecture as the execution
engine, shown in Table 1. The encoded question and
(flattened) image features are concatenated and passed to a
two-layer MLP with two hidden layers of 1024 units each,
with ReLU nonlinearities after each layer.

CNN+LSTM+SA. The question and image are encoded
in exactly the same manner as the CNN+LSTM baseline.
However rather than concatenating these representations,
they are fed to two consecutive Stacked Attention lay-
ers [10] with a hidden dimension of 512 units; this results
in a 512-dimensional vector which is fed to a linear layer to
predict answer scores.

This matches the CNN+LSTM+SA model as origi-
nally described by Yang et al. [10]; this also matches the
CNN+LSTM+SA model used in [6].

CNN+LSTM+SA+MLP. Identical to CNN+LSTM+
SA; however the output of the final stacked attention mod-
ule is fed to a two-layer MLP with two hidden layers of
1024 units each, with ReLU nonlinearities after each layer.

Since all other other models (LSTM, CNN+LSTM, and
ours) terminate in an MLP to predict the final answer distri-
bution, the CNN+LSTM+SA+MLP gives a more fair com-
parison with the other methods.

. The brown object that is the same shape as the green
Question: . . .
shiny thing is what size?
Fragments: (.what _thing)
Question: What material is the big purple cylinder?
Fragments: | (material purple); (material big); (material (and purple big))
How big is the cylinder that is in front of the green
Question: metal object left of the tiny shiny thing that is in
front of the big red metal ball?
Fragments: (.what _thing)
Are there any metallic cubes that are on the right side
Question: of the brown shiny thing that is behind the small metallic
sphere to the right of the big cyan matte thing?
Fragments: (is brown); (is cubes); (is (and brown cubes))
Is the number of cyan things in front of the purple matte
Question: cube greater than the number of metal cylinders left of the
small metal sphere?
Fragments: (is cylinder); (is cube); (is (and cylinder cube))
Question: Are there more small blue spheres than tiny green things?
Fragments: (is blue); (is sphere); (is (and blue sphere))
Question: Are there more big green things than large purple shiny cubes?
Fragments: (is cube); (is purple); (is (and cube purple))
Question: What number of things are large yellow metallic balls or
’ metallic things that are in front of the gray metallic sphere?
Fragments: (number gray); (number ball); (number (and gray ball))
Question: The tiny cube has what color?
Fragments: (.what _thing)
Question: There is a small matte cylinder; is it the same color as the
’ tiny shiny cube that is behind the large red metallic ball?
Fragments: (.what _thing)

Table 5. Examples of random questions from the CLEVR training set, parsed using the code by Andreas et al. [1] for parsing questions
from the VQA dataset [3]. Each parse gives a set of layout fragments separated by semicolons; in [1] these fragments are combined to
produce candidate layouts for the module network. When the parser fails, it produces the default fallback fragment (.what _thing).

Surprisingly, the minor architectural change of re-
placing the linear transform with an MLP signifi-
cantly improves performance on the CLEVR dataset:
CNN+LSTM+SA achieves an overall accuracy of 69.8,
while CNN+LSTM+SA+MLP achieves 73.2. Much of
this gain comes from improved performance on compar-
ison questions; for example on shape comparison ques-
tions CNN+LSTM+SA achieves an accuracy of 50.9 and
CNN+LSTM+SA+MLP achieves 69.7.

Training. All baselines are trained using Adam with a
learning rate of 5 x 10~* with a batch size of 64 for a maxi-
mum of 360,000 iterations, employing early stopping based
on validation set accuracy.

2. Neural Module Network parses

The closest method to our own is that of Andreas et
al. [1]. Their dynamic neural module networks first perform
a dependency parse of the sentence; heuristics are then used

to generate a set of layout fragments from the dependency
parse. These fragments are heuristically combined, giving a
set of candidate layouts; the final network layout is selected
from these candidates through a learned reranking step.

Unfortunately we found that the parser used in [!] for
VQA questions did not perform well on the longer ques-
tions in CLEVR. In Table 5 we show random questions
from the CLEVR training set together with the layout frag-
ments computed using the parser from [1]. For many ques-
tions the parser fails, falling back to the fragment (_what
_thing) ; when this happens then the resulting module net-
work will not respect the structure of the question at all. For
questions where the parser does not fall back to the default
layout, the resulting layout fragments often fail to capture
key elements from the question; for example, after parsing
the question What material is the big purple cylinder?, none
of the resulting fragments mention the cylinder.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

J. Andreas, M. Rohrbach, T. Darrell, and D. Klein. Learn-
ing to compose neural networks for question answering. In
NAACL, 2016. 1,3

J. Andreas, M. Rohrbach, T. Darrell, and D. Klein. Neural
module networks. In CVPR, 2016. 1

S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. Zit-
nick, and D. Parikh. VQA: Visual question answering. In
ICCV,2015. 3

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, 2016. 1

S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In
ICML, 2015. 1

J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C. L.
Zitnick, and R. Girshick. CLEVR: A diagnostic dataset for
compositional language and elementary visual reasoning. In
CVPR, 2017. 1,2

D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. In ICLR, 2015. 1,2

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
et al. ImageNet large scale visual recognition challenge.
1JCcv, 2015. 1

L. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence
learning with neural networks. In NIPS, 2014. 1

Z. Yang, X. He, J. Gao, L. Deng, and A. Smola. Stacked
attention networks for image question answering. In CVPR,
2016. 2

