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Figure 1: 3D models and their point clouds. (a) 3D models
of tables and its neighboring chairs. (b) the corresponding
point cloud data.

A. Overview

The supplementary material provides a demo video and
an additional quantitative test example to the main paper.

In Sec B, we provide a demo video to illustrate the pro-
cess that an eye window localizes and detects the category
table in a room of the Stanford 3D semantic parsing data
set [1] (Stanford dataset). In Sec C, we give the classifi-
cation result of the SUNCG point cloud data obtained by
our method, and analyze the experimental result. The train-
ing dataset is composed of the Stanford dataset and 20%
of the SUNCG point cloud data. The other SUNCG point
cloud data is taken as the testing data. The SUNCG point
cloud data, which is derived from the SUNCG dataset [2],
has been described in Section 4 of the main paper. The
code we use for converting SUNCG dataset into point cloud
data is accessible on github (https://github.com/
CKchaos/scn2pointcloud_tool). Fig. 1(a) illus-
trates 3D models of tables and its neighboring chairs. Fig.
1(b) illustrates their corresponding point cloud data.

To validate the performance of our method, we also ob-
tain the classification result using the method of Armeni et
al. [1] on the same training data and testing data as ours.

B. A Demo Video of the Detection Process

The attached video shows the process of an eye window
detect the category table in a room of the Stanford dataset.
There are mainly two types of tables in the scene. As il-
lustrated in the video, it is noted that the eye window can

envelop all of the tables in the scene. We also observe that
the DQN has the ability to rapidly localize the approximate
locations of the tables, and spend most of time on detect-
ing the boundaries of the tables. In the experiment, we only
classify a point into a category if the point is detected by
the eye window for more than 5 times. Even the boundaries
seem rough in the video, the final classification performance
is still high. The eye window has also spent a lot of time
around the bookcase since the bookcase resembles a table
in its height and structure. We plan to integrate the con-
text information into our method to enhance the detection
performance of the eye window.

C. Experimental Results on SUNCG Point
Cloud Dataset

C.1. Training data and testing data

To further validate the performance of our method, the
training data comes from two different indoor point clouds.
We then transfer the trained parameters of our network
model to the testing data for performing the classification.
Specifically, we first train the 3D CNN on the Stanford
dataset. Then, in order to make the 3D CNN adapt to the
new environment, based on the original parameters we use
20% of the SUNCG point cloud data to further train the
3D CNN. The training process is the same as it was on the
Stanford dataset. It costs 48 hours and the training error
converges to approximately 10%. The other 80% of the
SUNCG point cloud data are taken as the testing data.

C.2. Comparison between our method and the
method of Armeni et al. [1]

Table 1 lists the classification results obtained by our
method and the method of Armeni et al. [1]. From this ta-
ble, it is noted that our method outperforms the method of
Armeni et al. [1].

https://github.com/CKchaos/scn2pointcloud_tool
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door table bookcase chair mean
N1+N2 18.53 52.31 27.01 34.98 33.21
S1 21.84 29.60 14.14 8.66 18.56

Table 1: Comparison of methods. N1+N2 is our method.
S1 refers to the method of Armeni et al. [1].

C.3. Analysis of the experimental result

The classification performance of our method on the
SUNCG point cloud dataset is not higher than that on the
Stanford dataset. The main reasons lie in twofold.

On the one hand, the complexity and irregularity of ob-
jects in the SUNCG point cloud dataset. For instance, chairs
in the Stanford 3D data set generally have two styles, and
thus this similarity of structure among chairs can be easily
learned by the 3D CNN. In this way, the 3D CNN produces
more accurate scores for the DQN to determine the next
action of the eye window. However, in the SUNCG point
cloud dataset, the styles of chairs are different in different
rooms. We lack enough training data with similar features
to train the 3D CNN for producing an accurate score. The
same cases happen to other objects. Compared with the
Stanford dataset, the spatial relationship among objects in
the SUNCG point cloud dataset are more complicated, and
the patterns of the objects are also more difficult to be rec-
ognized.

On the other hand, the performance of the used computer
hardware is limited. In order to enable the proposed method
to deal with large-scale 3D point clouds, we utilize the 3D
CNN with 6 layers (including convolutional and fully con-
nected layers) to parse the point clouds. The too limited
layers of the 3D CNN reduce the generalization ability of
the 3D CNN. Due to the limitations of the hardware, fierce
down-sampling is applied in our network model. In this sit-
uation, the feature representation is not discriminative. If
a deeper 3D CNN with less down-sampling is employed
to handle point clouds of complex scenes like the SUNCG
point cloud dataset, we believe the classification accuracy
would be greatly enhanced.
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