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1. Details of Rendering Layer
We model the image formation process mathematically similar to the classical rendering equation, but without emitted

spectral radiance. Given per-pixel surface normals n (in camera coordinates), material properties m and illumination L, the
outgoing light intensity for each pixel p in image I can be written as an integration over all incoming light directions ωi:

Ip(np,m,L) =

∫
f(−→ω i,

−→ω p,m)L(i)max(0,np · −→ω i)dωi, (1)

where L(ωi) defines the intensity of the incoming light and f(ωi, ωp,m) defines how this light is reflected along the
outgoing light direction ωp based on the material properties m. ωp is also the viewing direction, which can be computed
using FOV and image size. In order to make this formulation differentiable, we substitute the integral with a sum over a
discrete set of incoming light directions defined by the illumination L:

Ip(np,m,L) =
∑
L

f(−→ω i,
−→ω p,m)L(i)max(0,np · −→ω i)dωi. (2)

where dωi represents the contribution (weight) a single light ωi.

1.1. Representations

We now describe in detail how surface normals, illumination, and material properties are represented.
Surface normals (n). Given an image I of dimension w × h, n is represented by a 3-channel w × h normal map where

the r, g, b color of each pixel p encodes the x, y, and z dimensions of the per-pixel normal −→np. The normal for each pixel has
3 channels:

np = (n1p, n
2
p, n

3
p)

Illumination (L). We represent illumination with an HDR environment map of dimension 64 × 128. This environment
map is a spherical panorama image flattened to the 2D image domain. Each pixel coordinate in this image can easily be
mapped to spherical coordinates and thus corresponds to an incoming light direction ωi in Equation 2. The pixel value stores
the intensity of the light coming from this direction.

Let HL and WL represent the height and width of the environment map respectively. For each pixel i = h ∗WL + w,
which has the row index and column index to be hL and wL, in the environment map, we define θLi and φLi to be:

θLi =
hL
HL

π, φLi =
wL
WL

π

Then the direction of the lighting this pixel generates is:

−→ωi =< cosφLi sin θLi , cos θ
L
i , sinφ

L
i sin θLi >

Note that we will not compute the derivative of −→ωi and there is no parameter to learn during the training.
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Material (m). We define f(ωi, ωp,m) based on BRDFs [3] which provide a physically correct description of pointwise
light reflection both for diffuse and specular surfaces. We adopt the Directional Statistics BRDF (DSBRDF) model [4] which
is shown to accurately model a wide variety of measured BRDFs. The DSBRDF is based on approximating the BRDF values
using the mixtures of hemi-sphere distributions.

To begin with, we define a half vector to be:

−→
hp =

−→ωi +−→ωp
||−→ωi +−→ωp||

We then denote the angle between half vector and lighting direction to be θd.

θd = acos(min(1,max(0,−→ωi ·
−→
hp)))

The material coefficient is related to θd. For each θd, the material coefficient has 3 (< R,G,B > channels) × 3 (3
mixtures of hemi-sphere distribution) × 2 (2 coefficients per hemi-sphere distribution) parameters. Instead of tabulating
the material coefficients for every θd, we only estimate the coefficients of a few θd-s. Specifically, 18 θd-s’ corresponding
coefficients are estimated using the raw MERL BRDF dataset [2]. Later, those coefficients will be used to fit a second degree
B-spline with nine knots, which results in 6 variables [1]. Thus, in total, there will be 3 × 3 × 2 × 6 parameters in each
BRDFS’s material coefficient m.

We denote the second degree B-spline function as S(θd,m), then for any θd, the coefficients are (mk
s,t) = S(θd,m),

where k ∈ {0, 1, 2}, s ∈ {0, 1, 2} and t ∈ {0, 1}. k represents one of the 3 channels (R, G, B); s represents one of the three
mixtures of hemi-sphere distributions; t indexes two coefficients in hemi-sphere distribution.

The function f(−→ω i,
−→ω p,m) can be re-written as:

fk(−→ω i,
−→ω p,m) =

2∑
s=0

(em
k
s,0·max(0,

−→
hp·np)

mk
s,1 − 1)

where k represents one of the 3 channels (R, G, B).
Having all of these representations, we can re-write our image formation as following:

Ikp (np,m,L) =

HL·WL∑
i=1

fk(−→ω i,
−→ω p,m)L(i)max(0,np · −→ω i)dωi

=

HL·WL∑
i=1

(
2∑
s=0

(em
k
s,0·max(0,

−→
hp·np)

mk
s,1 − 1)) · Lk(i) ·max(0,np · −→ω i) sin(

bi/WLc
HL

π)

1.2. Derivative

Derivative over Light. For lighting, we only need to compute the derivative over the intensity values of Lk(i), k ∈
{0, 1, 2}. We don’t need to compute the derivative of the lighting direction.

∂Ip(np,m,L)

∂Lk(i)
= (

2∑
s=0

(em
k
s,0·max(0,

−→
hp·np)

mk
s,1 − 1)) ·max(0,np · −→ω i) sin(

bi/WLc
HL

π)

Derivative over Normal. We compute the derivative of normal for each channel individually. If
−→
hp · np <= 0 or np ·

−→ω i <= 0, then ∂Ip(np,m,L)
∂nc

p
= 0

Otherwise,

∂Ip(np,m,L)

∂ncp
=

2∑
k=0

HL·WL∑
i=1

(

2∑
s=0

(em
k
s,0·max(0,

−→
hp·np)

mk
s,1 − 1)) · Lk(i) · ωci sin(

bi/WLc
HL

π)+

2∑
k=0

HL·WL∑
i=1

(
2∑
s=0

(em
k
s,0·max(0,

−→
hp·np)

mk
s,1 ·mk

s,0 ·mk
s,1 ·max(0,

−→
hp · np)

mk
s,1−1)·



Lk(i) ·max(0,np · −→ω i) sin(
bi/WLc
HL

π)

Derivative over Material. We first compute the derivative for mk
s,t, and then based on chain rule and the spline interpo-

lation function, we get the derivative for the original m.

∂Ip(np,m,L)

∂mk
s,0

=

HL·WL∑
i=1

(em
k
s,0·max(0,

−→
hp·np)

mk
s,1 ·max(0,

−→
hp · np)

mk
s,1) · Lk(i) ·max(0,np · −→ω i) sin(

bi/WLc
HL

π)

∂Ip(np,m,L)

∂mk
s,1

=

HL·WL∑
i=1

(em
k
s,0·max(0,

−→
hp·np)

mk
s,1 ·mk

s,0 ·max(0,
−→
hp · np)

mk
s,1 · ln(

−→
hp · np))·

Lk(i) ·max(0,np · −→ω i) sin(
bi/WLc
HL

π)

then applying back the spline interpolation function (mk
s,t) = S(θd,m), we have

∂Ip(np,m,L)
∂m = (

∂Ip(np,m,L)

∂mk
s,t

) · ∂S(θd,m)
∂m

2. Network Design
We provide the detailed architectures for the normal, material, and illumination prediction modules in Figures 1, 2, and 3

respectively. Those networks can also be replaced with some other more recent network designs. The goal of this paper is to
show performance improvement brought by the rendering layer.
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Figure 1. Architecture for the normal prediction module

3. Cross Material Transfer
In Fig 4, we provide the cross material transferring results, where we transfer the material predicted from one image to

another image, using our approach with post-optimization.
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Figure 2. Architecture for the material prediction module
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Figure 3. Architecture for the illumination prediction module
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Figure 4. Given a set of images (in diagonal, in red boxes) as inputs, we synthesize new images by using shape and light from its row and
material from its column using our approach.


