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1. Introduction
In this supplementary material we supply more compre-

hensive details about additional tables and graphs related to
the main experiments, results on additional IQA datasets,
and ranked dataset generation.

2. Additional experimental results
Here we provide insight into the ability of our RankIQA

approach to learn to discriminate distortions, results illus-
trating the convergence properties of our fast Siamese back-
propagation technique, and experimental results on addi-
tional IQA datasets.
Learning from Rankings and IQA discrimination. We
trained our network on the Places2 [12] dataset until con-
vergence, but performed no fine-tuning on IQA scores. We
then plot as histograms the output of our Siamese network
on images from the Waterloo [4] dataset distorted with four
different distortions as shown in Fig. 1. In the plot, we di-
vide the observations according to the true distortion level
(indicated by the color of the histogram). The model dis-
criminates different levels of distortions on Waterloo, even
though the acquisition process and the scenes of the two
datasets are totally different.
Efficient Siamese backpropagation. We compare our
method to both standard random pair sampling, and a hard-
negative mining method similar to [10]1. The comparison
of convergence rate on JP2K, JPEG, GB and GN is shown
in Fig. 2. For all four distortions, the efficient Siamese
backpropagation not only converges much faster, but also
converges to a considerably lower loss depending on how
difficult is the specific distortion. It is notable that for the
easiest distortion GN, our method converges fast and ob-
tains slightly better performance than hard-negative mining
method in the end, however for other three relatively diffi-
cult distortions, our method achieves a significant improve-

1We experimented with several hard-negative mining methods and
found this to obtain the best results.

ment. In addition, we train four distortions jointly on entire
LIVE [9] dataset. The comparison of convergence rate for
three methods is shown in Fig. 3. The same conclusion as
individual distortion can be drawn.

Baseline performance analysis. The performance eval-
uation (LCC) on the entire TID2013 [7] database is shown
in Table 1. Our RankIQA method achieves superior results
on almost all individual distortions even without ever us-
ing the TID2013 dataset. However, performance decreases
for ALL distortions, which is because of nonlinear relation-
ship between predicted and ground truth scores that is im-
possible to capture without fine-tuning on TID2013. After
fine-tuning on the TID2013 database (RankIQA+FT), we
considerably improve the ALL score, and improve the base-
line by 13% on LCC. However, in the fine-tuning process to
optimize the ALL score the network balances the various
distortions, and this results in a decrease in performance for
several individual distortions.

Evaluation on CSIQ [3]. We compare the performance of
our method using the VGG-16 network with state-of-the-art
methods. Four distortion types from CSIQ are used in this
experiments (the distortions shared with the LIVE dataset:
JPEG, JP2K, GB and GN). We randomly split the reference
images and distorted versions from LIVE into 80% training
samples and 20% testing, and compute the average LCC and
SROCC scores on the testing set after training to conver-
gence. This process is repeated ten times and the results are
averaged. These results are shown in Table 2. Note that our
RankIQA approach achieves comparable results compared
to other start-of-the-art methods even without having access
to the CSIQ dataset. Especially for SROCC, our method
is superior than others except HOSA. After fine-tuning on
CSIQ, we obtain about 1% higher on LCC and about 2%
higher on SROCC than the state-of-the-art methods.

Evaluation on MLIVE [2]. In this experiment, We com-
pare the performance of our method using the VGG-16 net-
work with state-of-the-art methods. MLIVE is randomly
split into 80% training samples and 20% testing, and the
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(d) JP2K

Figure 1. Siamese network output for JPEG, GN, GB, and JP2K distortions at 6 different levels. These graphs illustrate that the Siamese
network successfully manages to separate the different distortion levels, even without fine-tuning on IQA scores. (Corresponding to Figure
2 in main submission.)

Method #01 #02 #03 #04 #05 #06 #07 #08 #09 #10 #11 #12 #13
Baseline 0.547 0.452 0.715 0.162 0.704 0.535 0.503 0.763 0.683 0.827 0.817 0.598 0.666
RankIQA 0.883 0.852 0.906 0.725 0.919 0.839 0.904 0.810 0.897 0.955 0.937 0.671 0.426

RankIQA+FT 0.652 0.588 0.796 0.326 0.780 0.703 0.776 0.811 0.819 0.894 0.894 0.755 0.798
Method #14 #15 #16 #17 #18 #19 #20 #21 #22 #23 #24 ALL
Baseline 0.170 0.322 0.046 0.500 0.370 0.466 0.375 0.660 0.614 0.793 0.773 0.663
RankIQA 0.484 0.639 0.369 0.665 0.591 0.833 0.622 0.875 0.806 0.891 0.750 0.566

RankIQA+FT 0.472 0.626 0.260 0.628 0.629 0.593 0.661 0.798 0.782 0.834 0.874 0.799

Table 1. Performance evaluation (LCC) on the entire TID2013 database. The Baseline approach fine-tunes an ImageNet-trained network
on TID2013 data. Our RankIQA approach fine-tunes an ImageNet-trained network using only ranked images, and RankIQA+FT is our
learning-from-ranking approach further fine-tuned on TID2013 data. (Corresponding to Table 2 in main submission.)

Method LCC SROCC
DIIVINE [6] 0.898 0.876

BRISQUE [5] 0.928 0.910
BLIINDS-II [8] 0.932 0.914

HOSA [11] 0.948 0.930
RankIQA 0.911 0.918

RankIQA+FT 0.960 0.947

Table 2. Average LCC and SROCC on CSIQ

average LCC and SROCC scores are computed on the test-
ing set after training to convergence. This process is re-
peated ten times and the results are averaged. These re-
sults are shown in Table 3. MLIVE is more challenging
than LIVE and CSIQ because multiple distortions are ap-

plied into each reference image. Similar conclusions as for
LIVE and CSIQ can be drawn: RankIQA captures the fac-
tors that vary between different distortions, and achieves re-
sults similar to other methods. After fine-tuning, we obtain
about 1% higher on LCC and about 2% higher on SROCC
than the state-of-the-art.

Ablation Analysis To further probe the relation between
performance of the metric and the number of images trained
in ranked datasets and distortion levels, we did two experi-
ments on the train-test split of TID2013. In the first exper-
iment we fixed the number of reference images for gener-
ating distortions, and vary the number of distortion levels
from 2 to 6 (we used 5 in the paper). The resulting LCC is
in Table 4, from which observe that accuracy increases with
more distortion levels until 5. In the second experiment we
fixed the number of distortion levels, and vary the number
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(b) Ranking loss on JPEG
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(c) Ranking loss on GB
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(d) Ranking loss on GN

Figure 2. Convergence properties of our approach. Convergence of ranking loss on JP2K, JPEG, GB and GN distortions for our approach
versus standard Siamese and hard-negative mining. (Corresponding to Figure 3 in main submission.)
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Figure 3. The networks are trained jointly on entire LIVE dataset
including JPEG, JP2K, GB and GN distortions. Convergence of
ranking loss for our approach versus standard Siamese and hard-
negative mining.

of reference images from 20% to 100% of all reference im-
ages from Waterloo (we used 80% in the paper). The LCC
increases gradually with percent of dataset. From these two
experiments we see that distortion levels have more impact
on accuracy than number of images. To conclude, more data

Method LCC SROCC
DIIVINE [6] 0.894 0.874
BRISQUE [5] 0.921 0.897

BLIINDS-II [8] 0.903 0.887
HOSA [11] 0.926 0.902
RankIQA 0.898 0.893

RankIQA+FT 0.936 0.921

Table 3. Average LCC and SROCC on MLIVE

Distortion levels 2 3 4 5 6
LCC 0.73 0.75 0.82 0.85 0.84

Percent of dataset 20% 40% 60% 80% 100%
LCC 0.82 0.83 0.84 0.85 0.85

Table 4. The relation between LCC and distortion levels and per-
cent of dataset.

still has the potential to increase performance, but levels of
distortion are crucial for the final accuracy.



3. Synthetic ranked dataset generation
We synthetically generate a range of distortions from ref-

erence images. The types of distortions generated depend
on the target test dataset.
To test on the LIVE [9] and CSIQ [3] datasets. We gen-
erate four types of distortions which are widely used and
shared by the two datasets: Gaussian Blur (GB), Gaussian
Noise (GN), JPEG Compression (JPEG), and JPEG2000
Compression (JP2K). Following [4] we generate all distor-
tions at five levels, and the details are:

• Gaussian Blur: 2D circularly symmetric Gaussian
blur kernels with standard deviations of [1.2, 2.5, 6.5,
15.2, 33.2] are used to distort the original images.

• Gaussian Noise: Gaussian noise is added to the orig-
inal images, where variances are set to [0.001, 0.006,
0.022, 0.088, 1.000] for the five distortion levels, re-
spectively.

• JPEG Compression: The quality factor that deter-
mines the DCT quantization matrix is set to be [43,
12, 7, 4, 0] for the five levels, respectively.

• JPEG2000 Compression: The compression ratio is
set to be [52, 150, 343, 600, 1200] for the five levels,
respectively.

To test on the MLIVE [2] dataset. MLIVE includes
two datasets of images distorted by two types of distortions.
The first is distorted by Gaussian Blur followed by JPEG
(GB+JPEG). The second is distorted by Gaussian Blur fol-
lowed by Gaussian Noise (GB+GN). The whole database
consists of 450 distorted images. The distortion details are:

• GB+JPEG: 2D circularly symmetric Gaussian blur
kernels with standard deviations of [1.2, 2.5, 6.5] are
used to distort the reference images. Then the qual-
ity factor that determines the DCT quantization matrix
is set to be [43, 12, 7] for the 3 levels, respectively.
For each reference image, there are 9 distorted versions
generated.

• GB+GN: 2D circularly symmetric Gaussian blur ker-
nels with standard deviations of [1.2, 2.5, 6.5] are
used to distort the reference images. Gaussian noise is
then added to the images, with variances set to [0.001,
0.006, 0.022] for the 3 distortion levels, respectively.
For each reference image, there are 9 distorted versions
generated.

To test on TID2013 [7]. The TID2013 dataset consists
of 25 reference images with 3000 distorted images from
24 different distortion types at 5 degradation levels. Mean
Opinion Scores are in the range [0, 9]. Distortion types

include a range of noise, compression, and transmission ar-
tifacts. We generate 17 out of the 24 distortions for training
our networks. For the distortions which we could not gen-
erate, we apply fine-tuning from the network trained from
the other ones. The generations details are as follows (dis-
tortions in bold are synthetically generated, while those in
normal typeface we do not generate):

• #01 additive white Gaussian noise: The local vari-
ance of the Gaussian noise added in RGB color space
is set to be [0.001, 0.005, 0.01, 0.05].

• #02 additive noise in color components: The local
variance of the Gaussian noise added in the YCbCr
color space is set to be [0.0140, 0.0198, 0.0343,
0.0524].

• #03 additive Gaussian spatially correlated noise: there
was insufficient detail in the original TID2013 pa-
per [7] about how spatially correlated noise was gen-
erated and added to reference images.

• #04 masked noise: there was insufficient detail in the
original TID2013 paper [7] about how masks were
generated.

• #05 high frequency noise: The local variance of the
Gaussian noise added in the Fourier domain is set to be
[0.001, 0.005, 0.01, 0.05] after which it is multiplied
by a high-pass filter.

• #06 impulse noise: The local variance of “salt &
pepper” noise added in RGB color space is set to be
[0.005, 0.01, 0.05, 0.1].

• #07 quantization noise: The quantization step is set
to be [27, 39, 55, 76].

• #08 Gaussian blur: 2D circularly symmetric Gaus-
sian blur kernels are applied with standard deviations
set to be [1.2, 2.5, 6.5, 15.2].

• #09 image denoising: The local variance of the Gaus-
sian noise added in RGB color space is [0.001, 0.005,
0.01, 0.05]. Followed by the same denoising process
as in [1].

• #10 JPEG compression: The quality factor that deter-
mines the DCT quantization matrix is set to be [43, 12,
7, 4].

• #11 JPEG2000 compression: The compression ratio
is set to be [52, 150, 343, 600].

• #12 JPEG transmission errors: the precise details of
how JPEG transmission errors were introduced was
not clear and we were unable to reproduce this dis-
tortion type.



• #13 JPEG2000 transmission errors: the precise details
of how JPEG2000 transmission errors were introduced
was not clear and we were unable to reproduce this
distortion type.

• #14 non eccentricity pattern noise: Patches of size
15x15 are randomly moved to nearby regions [7]. The
number of patches is set to [30, 70, 150, 300].

• #15 local blockwise distortion of different intensity:
Image patches of 32x32 are replaced by single color
value (color block) [7]. The number of color blocks
we distort is set to be [2, 4, 8, 16].

• #16 mean shift: Mean value shifting generated in both
directions is set to be: [-60,-45,-30,-15] and [15, 30,
45, 60].

• #17 contrast change: Contrast change generated in
both directions is set to be: [0.85, 0.7, 0.55, 0.4] and
[1.2, 1.4, 1.6, 1.8].

• #18 change of color saturation: The control factor as
in TID2013 paper [7] is set to be: [0.4, 0, -0.4, -0.8].

• #19 multiplicative Gaussian noise: The local vari-
ance of the Gaussian noise added is set to be [0.05,
0.09,0.13, 0.2].

• #20 comfort noise: the authors of [7] used a propri-
etary encoder unavailable to us.

• #21 lossy compression of noisy images: the authors
of [7] used a proprietary encoder unavailable to us.

• #22 image color quantization with dither: The quan-
tization step is set to be: [64, 32, 16, 8].

• #23 chromatic aberrations: The mutual shifting of in
R and B channels is set to be [2, 6, 10, 14] and [1, 3, 5,
7], respectively.

• #24 sparse sampling and reconstruction: the authors
of [7] used a proprietary encoder unavailable to us.

4. Shallow network details
In this section we give additional details of the Shallow

network we use in our network comparison experimental
analysis. The shallow network has four convolutional layers
and one fully connected layer as shown in Table 5.

5. Discussion
In this work we address the problem of scarcity in IQA

data and proposed a method which learns from synthetically
generated ranked image datasets. Our fast backpropagation
method for Siamese networks is general and can be applied

Layer Output size Description
Input layer 3x227x227 RGB input images

Layer 1 32x57x57 conv1 (3x3), relu1, pool1 (4x4)
Layer 2 32x14x14 conv2 (3x3), relu2, pool2 (4x4)
Layer 3 32x12x12 conv3 (3x3), relu3
Layer 4 32x1x1 conv4 (12x12)
Layer 5 1 fc1

Table 5. Details of the Shallow network used for evaluation.

to a wide class of loss functions. In this supplementary ma-
terial we gave specific details of how distortions are gener-
ated, and also showed that our efficient Siamese backprop-
agation technique converges faster and to a lower objective
than standard Siamese network training and hard-negative
mining. Finally, we demonstrated that that the results of our
approach generalize to a broad range and number of distor-
tions, as indicated by our state-of-the-art results on CSIQ,
MLIVE, and TID2013.
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