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In this Supplementary, we will expand more details that are not included in the main text due to the page limitation. In
particular, we supplement the following content on
• how to implement the optimization of our approach efficiently;
• how to perform spatial pooling normalization to convolutional activations; we only briefly mention this procedure in

Section 5.1 of the main text;
• detailed introduction regarding used datasets;
• additional results evaluated on Office and ImageNet–VOC2007 datasets;
• parameters sensitivity.

1. Towards efficient optimization
In this section, we will reveal several important details towards efficient practical implementations. Note that Xs ∈

Rn1×...×nK×Ns is a (K+1)-mode tensor, the unfolding matrix Xs(k) is of size nk×n\kNs, where n\k = n1 · · ·nk−1nk+1 · · ·nK .
When computing Q(k) = Xs(k)M

T
\k in Eq. (13), MT

\k will be of size n\kNs × n\kNs, which is extremely large and con-
sume a huge amount of memory to store. In fact, such a matrix even cannot be constructed in a general-purpose computer.
To alleviate this, we choose to solve an equivalent optimization problem by reformulating Eq. (13) into its sum form as

min
M(k)

Ns∑
n=1

‖M (k)Qn
(k) − Y n

(k)‖2F − λ‖M
(k)Xn

s(k)‖2F

s.t. ∀k, M (k)M (k)T = I

, (1)

where
Qn

(k) = Xn
s(k)M̂

T

\k

M̂
T

\k = M (K) ⊗ · · · ⊗M (k+1) ⊗M (k−1) ⊗ · · · ⊗M (1)
, (2)

Y n
(k) = Y (k)(:, :, n) (Y (k) has been reshaped into the size of nk × n\k ×Ns), and Xn

s(k) denotes the k-th mode unfolding
matrix of Xn

s . In following expressions, we denote Qn
(k), Y

n
(k), and Xn

s(k) by Qn, Y n, and Xn for short, respectively. By
replacing M (k)T with P , we arrive at

min
P

Ns∑
n=1

‖QT
nP − Y T

n‖2F − λ‖X
T
nP ‖2F

s.t. ∀k, P TP = I

. (3)
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Considering that a standard solver needs the loss function F and its gradient ∂F/∂P as the input, we can compute them in
the following way to speed up the optimization process. For the loss function F , we have

F =
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n‖2F − λ‖X
T
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=
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where Tr[·] denotes the trace of matrix. For the gradient ∂F/∂P , we have

∂F/∂P = 2

Ns∑
n=1

Qn(Q
T
nP − Y T

n )− 2λ

Ns∑
n=1

XnX
T
nP

= 2(

Ns∑
n=1

QnQ
T
n )P − 2

Ns∑
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QnY
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n − 2λ(
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XnX
T
n )P

. (5)

Notice that bothF and ∂F/∂P share some components. As a consequence, we can precompute
∑Ns

n=1 QnQ
T
n ,

∑Ns

n=1 QnY
T
n ,∑Ns

n=1 Y nY
T
n , and

∑Ns

n=1 XnX
T
n before the M-step optimization instead of directly feeding the original variables and

iteratively looping over Ns samples inside the optimization. Such a kind of precomputation speeds up the optimization
significantly.

2. Feature normalization with spatial pooling
Since we allow the input image to be of arbitrary size, a normalization step need to perform to ensure the consistency

of dimensionality. The idea of spatial pooling is similar to the spatial pyramid pooling in [5]. The difference is that we do
not pool pyramidally and do not vectorize the pooled activations, in order to preserve the spatial information. Intuitively,
Fig. 1 illustrates this process. More concretely, convolutional activations are first equally divided into Nbin bins along the
spatial modes (Nbin = 16 in Fig. 1). Next, each bin with size of h× w is normalized to a s× s bin by max pooling. In our
experiments, we set Nbin = 36 and s = 1.

3. Datasets and protocol details
Office–Caltech10 dataset. As mentioned in the main text, [4] extends Office [8] dataset by adding another Caltech domain.
They select 10 common categories from four domains, including Amazon, DSLR, web-cam, and Caltech. Amazon consists
of images used in the online market, which shows the objects from a canonical viewpoint. DSLR contains images captured
with a high-resolution digital camera. Images in web-cam are recorded using a low-end webcam. Caltech is similar to
Amazon but with various viewpoint variations. The 10 categories include backpack, bike, calculator, headphones,

Spatial Pooling

Max Pooling

h
w

s
s

Figure 1: Illustration of spatial pooling normalization. Any size of convolutional representations will be normalized to a
fixed-size tensor.



Amazon DSLR web-cam Caltech

Figure 2: Some images from Office–Caltech10 dataset. 4 categories of backpack, bike, headphone, and laptop
computer are selected.

ImageNet VOC2007

Figure 3: Some images from ImageNet-VOC2007 dataset. 5 categories of person, dog, motorbike, bicycle, and
cat are presented.

keyboard, laptop computer, monitor, mouse, mug, and projector. Some images of four domains are shown in
Fig. 2. Overall, we have about 2500 images and 12 domain adaptation problems. For each problem, we repeat the experiment
20 times. In each trail, we randomly select 20 images from each category for training if the domain is Amazon and Caltech,
or 8 images if the domain is DSLR or web-cam. All images in the target domain are employed in the both adaptation and
testing stages. The mean and standard deviation of multi-class accuracy are reported.

Office dataset. Office dataset is developed by [8] and turns out to be a standard benchmark for the evaluation of domain
adaptation. It consists of 31 categories and 3 domains, leading to 6 domain adaptation problems. Among these 31 categories,
only 16 overlap with the categories contained in the 1000-category ImageNet 2012 dataset1 [6], so Office dataset is more
challenging than its counterpart Office-Caltech10 dataset. We follow the same experimental protocol mentioned above to
conduct the experiments, so in each task we have 620 images in all from the source domain.

ImageNet–VOC2007 dataset. As described in the main text, ImageNet and VOC 2007 datasets are used to evaluate the
domain adaptation performance from single-label to multi-label situation. The same 20 categories as the VOC 2007 dataset
are chosen from original ImageNet dataset. These 20 categories are aeroplane, bicycle, bird, boat, bottle, bus,
car, cat, chair, cow, dining table, dog, horse, motorbike, person, potted plant, sheep, sofa,
train, and tv monitor. The 20-category ImageNet subset is adopted as the source domain, and the test subset of
VOC2007 is employed as the target domain. Some images of two domains are illustrated in Fig. ??. Also, the similar
experimental protocol mentioned above is used. The difference, however, is that we report the mean and standard deviation
of average precision (AP) for each category, respectively.

1The 16 overlapping categories are backpack, bike helmet, bottle, desk lamp, desk computer, file cabinet, keyboard,
laptop computer, mobile phone, mouse, printer, projector, ring binder, ruler, speaker, and trash can.



Method Feature A→D D→A A→W W→A D→W W→D MEAN

NA VCONV 53.8(2.3) 39.3(1.7) 47.7(1.7) 36.3(1.6) 77.4(1.7) 81.3(1.5) 56.0
PCA VCONV 40.5(3.3) 38.2(2.6) 36.5(2.9) 37.8(2.9) 68.7(2.5) 70.5(2.6) 48.7
DAUME VCONV 48.4(2.5) 35.2(1.5) 42.5(2.0) 33.6(1.8) 68.4(2.5) 74.2(2.4) 50.4
TCA VCONV 30.3(4.5) 20.1(4.4) 27.0(3.1) 18.1(3.0) 51.1(3.2) 53.0(3.2) 33.3
GFK VCONV 47.4(4.7) 36.2(2.9) 41.5(3.5) 33.4(2.6) 75.3(1.6) 78.0(2.4) 51.9
DIP VCONV 36.8(4.5) 13.8(1.8) 29.6(5.0) 17.8(2.6) 77.4(1.8) 81.5(2.0) 42.8
SA VCONV 28.6(3.5) 37.1(2.1) 29.0(2.1) 34.9(2.9) 75.1(2.4) 75.1(2.7) 46.6
LTSL VCONV 32.0(5.5) 28.6(1.6) 24.2(3.7) 27.1(2.0) 60.9(4.0) 73.9(3.3) 41.1
LSSA VCONV 56.6(2.0) 45.6(1.6) 52.2(1.6) 40.7(2.0) 73.0(2.1) 63.5(3.8) 55.3
CORAL VCONV 39.9(1.7) 42.7(0.9) 39.7(1.7) 40.7(1.0) 82.0(1.3) 79.5(1.4) 54.1

NTSL TCONV 56.1(2.4) 45.7(1.5) 50.8(2.3) 42.6(2.2) 84.4(1.6) 88.2(1.4) 61.3
TAISL TCONV 56.4(2.4) 45.9(1.1) 50.7(2.0) 43.2(1.7) 84.5(1.4) 88.5(1.2) 61.5

Table 1: Average multi-class recognition accuracy (%) on Office dataset over 20 trials. The highest accuracy in each column
is boldfaced, the second best is marked in red, and standard deviations are shown in parentheses.

4. Recognition results
We compare against the same methods used in the main text, including the baseline no adaptation (NA), principal compo-

nents analysis (PCA), transfer component analysis (TCA) [7], geodesic flow kernel (GFK) [4], domain-invariant projection
(DIP) [2], subspace alignment (SA) [3], low-rank transfer subspace learning (LTSL) [9], landmarks selection subspace align-
ment (LSSA) [1], and correlation alignment (CORAL) [11]. Our approach is denoted by NTSL (the naive version) and
TAISL. We also extract convolutional activations from the CONV5 3 layer of the VGG–VD–16 model [10]. We mark the
feature as VCONV and TCONV for vectorized and tensor-form convolutional activations, respectively. The same parameters
described in the main text are set to report the results.

Office results. Results of the Office dataset are listed in Table 1. Similar to the tendency shown by the results of Office-
Caltech10 dataset in the main text, our approach outperforms or is on par with other comparing methods. It is interesting
that sometimes NTSL even achieves better results than TAISL. We believe such results are sound, because a blind global
adaptation cannot always achieve accuracy improvement. However, it is clear that learning an invariant tensor space works
much better than learning a shared vector space. Furthermore, the joint learning effectively reduces the standard deviation
and thus improves the stability of the adaptation.

ImageNet–VOC2007 results. Table 2 shows the complete results on ImageNet–VOC2007 dataset (only partial results are
presented in the main text due to the page limitation). Our approach achieves the best mean accuracy in 4 and the second
best in 6 out of 20 categories. In general, when noisy labels exist in the target domain, our approach demonstrates a stable
improvement in accuracy. Moreover, compared to the baseline NTSL, the standard deviation is generally reduced, which
means aligning the source domain to the target not only promotes the classification accuracy but also improves the stability
of tensor space.

5. Parameters Sensitivity
Here we investigate the sensitivity of 3 parameters involved in our approach. Specifically, they are the spatial mode

dimensionality ds (d1 and d2 in the main text, we assume d1 = d2 = ds), the feature mode dimensionality df (d3 in the main
text), and the weight coefficient λ. We monitor how the classification accuracy changes when these parameters vary. At each
time, only one parameter is allowed to change. By default, ds = 6, df = 128, and λ = 1e−5. A DA task of W→C from
the Office-Caltech10 dataset is chosen. Results are illustrated by Fig. 4. According to Fig. 4, we can make the following
observations:
• In general, there exhibits a tendency for increased ds to increased classification accuracy, which implies that the adaptation

can benefit from extra spatial information. This is why we preserve the original spatial mode as it is.



VOC 2007 test aero bike bird boat bottle bus car cat chair cow

NA VCONV 66.4(2.1) 65.3(2.9) 65.6(4.0) 56.1(9.0) 29.5(2.1) 51.2(3.4) 70.9(4.5) 70.6(3.4) 19.3(2.0) 30.3(8.0)

PCA VCONV 28.9(5.8) 25.3(7.2) 30.2(3.9) 14.0(4.8) 23.3(5.2) 15.6(6.3) 41.5(7.5) 44.9(4.5) 11.2(0.9) 6.0(1.8)

Daumé III VCONV 64.1(3.7) 60.4(4.2) 59.7(7.4) 53.5(7.8) 26.6(3.3) 49.0(5.1) 66.3(5.1) 65.7(5.3) 18.6(3.5) 26.9(8.5)

TCA VCONV 43.2(9.8) 46.0(17.0) 44.4(10.5) 25.3(13.0) 20.7(1.7) 30.4(7.7) 59.5(8.6) 56.7(8.2) 17.1(3.0) 16.9(6.3)

GFK VCONV 70.0(6.9) 66.0(7.6) 74.6(3.8) 40.7(11.8) 32.5(4.4) 55.0(6.9) 71.3(5.2) 73.1(6.5) 16.3(3.6) 28.9(5.3)

DIP VCONV 69.8(5.5) 65.8(7.2) 78.4(4.6) 34.2(9.1) 29.1(5.0) 54.4(7.3) 75.7(3.9) 75.9(3.7) 20.1(4.6) 25.5(5.0)

SA VCONV 64.4(10.1) 54.4(9.3) 69.3(5.4) 50.8(12.7) 34.4(4.6) 50.8(6.5) 64.3(9.5) 67.4(4.9) 11.2(1.9) 18.4(6.6)

LTSL VCONV 56.9(10.4) 59.8(6.3) 61.0(7.7) 50.6(15.6) 34.9(6.2) 50.9(9.6) 66.9(3.6) 70.8(8.8) 11.4(1.5) 21.9(6.3)

LSSA VCONV 78.7(2.0) 71.8(1.5) 79.7(1.2) 18.5(2.0) 38.4(4.6) 64.1(3.2) 69.4(2.2) 81.7(0.5) 57.2(2.4) 29.5(1.9)

CORAL VCONV 71.4(3.3) 63.3(4.3) 71.7(3.6) 58.6(9.5) 35.2(2.4) 61.9(3.6) 62.7(7.1) 72.0(4.3) 18.7(2.7) 36.0(5.7)

NTSL TCONV 76.3(4.3) 61.6(5.5) 71.0(3.9) 65.9(8.3) 35.7(3.7) 56.1(7.1) 70.1(4.8) 71.3(3.2) 16.6(2.6) 34.7(9.8)

TAISL TCONV 76.4(5.1) 62.3(4.8) 71.6(3.1) 64.9(7.7) 36.7(3.5) 57.0(6.6) 71.2(4.3) 72.0(2.1) 15.7(2.9) 33.3(6.6)

table dog horse mbike person plant sheep sofa train tv mAP

NA VCONV 35.7(5.5) 47.9(6.4) 35.5(11.4) 47.0(8.0) 69.3(2.9) 25.6(3.9) 44.9(6.9) 46.9(5.3) 71.8(4.4) 56.4(3.3) 50.3

PCA VCONV 29.0(6.9) 32.5(4.6) 23.2(6.2) 25.0(5.0) 70.2(1.9) 9.3(4.3) 11.7(3.5) 16.2(2.8) 29.0(6.7) 29.0(6.6) 25.8

Daumé III VCONV 30.0(5.4) 43.6(6.9) 28.3(8.7) 40.5(6.6) 68.5(2.5) 23.6(3.5) 37.7(7.4) 44.5(5.6) 67.6(5.4) 51.9(4.4) 46.4

TCA VCONV 27.6(8.7) 43.2(7.6) 29.0(14.6) 31.8(10.2) 58.1(5.7) 11.6(4.5) 22.7(8.0) 24.0(9.4) 52.3(8.9) 33.6(10.2) 34.7

GFK VCONV 48.3(10.4) 56.7(7.4) 59.2(16.7) 58.3(4.8) 75.8(3.6) 15.2(4.6) 52.5(4.8) 44.7(6.0) 79.9(4.9) 57.1(4.5) 53.8

DIP VCONV 42.2(8.1) 53.7(5.4) 64.7(7.1) 56.3(5.7) 73.5(3.1) 14.7(4.2) 48.9(4.3) 39.8(10.0) 80.5(5.6) 59.4(5.2) 53.1

SA VCONV 36.9(12.8) 54.2(5.7) 39.5(15.5) 53.7(10.9) 68.9(2.4) 20.9(6.7) 31.4(10.2) 29.3(6.1) 73.5(5.2) 55.2(5.7) 47.4

LTSL VCONV 43.7(12.4) 55.4(7.4) 53.4(13.1) 52.5(10.7) 69.9(4.3) 18.8(8.2) 38.2(9.5) 28.9(13.2) 67.1(9.9) 54.0(7.5) 48.3

LSSA VCONV 33.7(3.4) 56.9(2.5) 41.1(5.4) 56.3(9.3) 51.2(2.0) 15.3(5.7) 32.5(10.6) 43.4(8.4) 81.1(1.4) 51.6(4.6) 52.6

CORAL VCONV 40.6(6.7) 53.8(5.3) 34.8(6.8) 57.3(5.6) 67.6(2.0) 24.2(1.5) 54.8(2.9) 47.7(6.2) 71.7(3.5) 56.9(3.6) 53.0

NTSL TCONV 49.8(10.4) 58.3(5.1) 40.9(12.9) 59.7(10.2) 72.0(4.6) 25.0(4.5) 53.4(6.0) 49.8(4.6) 75.3(3.6) 60.2(3.5) 55.2

TAISL TCONV 50.7(10.0) 57.6(3.8) 39.0(14.0) 60.3(8.7) 72.2(3.8) 26.6(5.4) 53.6(5.6) 49.8(5.6) 74.2(4.9) 60.4(3.5) 55.3

Table 2: Average precision (%) on ImageNet-VOC2007 dataset over 10 trials. The highest AP in each column is boldfaced,
the second best is marked in red, and standard deviations are shown in parentheses.
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Figure 4: Sensitivity of tensor subspace dimensionality and weight coefficient λ on the DA task of W→C.

• As per the feature mode dimensionality df , a dramatic growth appears when df increases from 1 to 16. However, the
classification accuracy starts to level off when df exceeds 16. Such results make sense, because when the feature di-
mensionality is relatively small, the discriminative power of feature representations cannot be guaranteed. Overall, our
approach demonstrates stable classification performance over a wide range of feature mode dimensionality.

• Only a slight fluctuation occurs when λ varies between 1e−9 and 1e1. The classification accuracy is virtually insensitive
to the weight coefficient λ. This is another good property of our approach.
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