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In this Supplementary, we will expand more details that are not included in the main text due to the page limitation. In
particular, we supplement the following content on

e how to implement the optimization of our approach efficiently;

e how to perform spatial pooling normalization to convolutional activations; we only briefly mention this procedure in
Section 5.1 of the main text;

e detailed introduction regarding used datasets;
e additional results evaluated on Office and ImageNet—VOC2007 datasets;
e parameters sensitivity.

1. Towards efficient optimization

In this section, we will reveal several important details towards efficient practical implementations. Note that X, €
R™ XXk XNs g g ({41)-mode tensor, the unfolding matrix X ,(x) is of size g Xny\j, Ns, where nyg, = ny -+ ng_1ngy1 - nk.
When computing Q(k) = Xs(k)M{k in Eq. (13), M\T,c will be of size n\;, Ns X ny\; Ns, which is extremely large and con-
sume a huge amount of memory to store. In fact, such a matrix even cannot be constructed in a general-purpose computer.

To alleviate this, we choose to solve an equivalent optimization problem by reformulating Eq. (13) into its sum form as
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Yy = Y (&) (:,1,m) (Y () has been reshaped into the size of ny x ny;, X Ns), and X, denotes the k-th mode unfolding
matrix of X7*. In following expressions, we denote Q?k), Y?k), and X ?( k) by Q,,, Y, and X, for short, respectively. By

replacing M®T with P, we arrive at
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Considering that a standard solver needs the loss function F and its gradient .F /OP as the input, we can compute them in
the following way to speed up the optimization process. For the loss function F, we have
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where T'r[-] denotes the trace of matrix. For the gradient 0.F /0P, we have
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Notice that both F and 0F /0P share some components. As a consequence, we can precompute ij;l Q,Q7%, ij;l QYY"
Zgil YnYZ, and Zgil X, X Z before the M-step optimization instead of directly feeding the original variables and
iteratively looping over N samples inside the optimization. Such a kind of precomputation speeds up the optimization
significantly.

2. Feature normalization with spatial pooling

Since we allow the input image to be of arbitrary size, a normalization step need to perform to ensure the consistency
of dimensionality. The idea of spatial pooling is similar to the spatial pyramid pooling in [5]. The difference is that we do
not pool pyramidally and do not vectorize the pooled activations, in order to preserve the spatial information. Intuitively,
Fig. 1 illustrates this process. More concretely, convolutional activations are first equally divided into Ny;, bins along the
spatial modes (/Vp;,, = 16 in Fig. 1). Next, each bin with size of A X w is normalized to a s X s bin by max pooling. In our
experiments, we set Ny, = 36 and s = 1.

3. Datasets and protocol details

Office—Caltech10 dataset. As mentioned in the main text, [4] extends Office [8] dataset by adding another Caltech domain.
They select 10 common categories from four domains, including Amazon, DSLR, web-cam, and Caltech. Amazon consists
of images used in the online market, which shows the objects from a canonical viewpoint. DSLR contains images captured
with a high-resolution digital camera. Images in web-cam are recorded using a low-end webcam. Caltech is similar to
Amazon but with various viewpoint variations. The 10 categories include backpack,bike, calculator, headphones,
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Figure 1: Illustration of spatial pooling normalization. Any size of convolutional representations will be normalized to a
fixed-size tensor.
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Figure 2: Some images from Office—Caltech10 dataset. 4 categories of backpack, bike, headphone, and laptop
computer are selected.
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Figure 3: Some images from ImageNet-VOC2007 dataset. 5 categories of person, dog, motorbike, bicycle, and
cat are presented.

keyboard, laptop computer, monitor, mouse, mug, and projector. Some images of four domains are shown in
Fig. 2. Overall, we have about 2500 images and 12 domain adaptation problems. For each problem, we repeat the experiment
20 times. In each trail, we randomly select 20 images from each category for training if the domain is Amazon and Caltech,
or 8 images if the domain is DSLR or web-cam. All images in the target domain are employed in the both adaptation and
testing stages. The mean and standard deviation of multi-class accuracy are reported.

Office dataset. Office dataset is developed by [8] and turns out to be a standard benchmark for the evaluation of domain
adaptation. It consists of 31 categories and 3 domains, leading to 6 domain adaptation problems. Among these 31 categories,
only 16 overlap with the categories contained in the 1000-category ImageNet 2012 dataset' [6], so Office dataset is more
challenging than its counterpart Office-Caltech10 dataset. We follow the same experimental protocol mentioned above to
conduct the experiments, so in each task we have 620 images in all from the source domain.

ImageNet-VOC2007 dataset. As described in the main text, ImageNet and VOC 2007 datasets are used to evaluate the
domain adaptation performance from single-label to multi-label situation. The same 20 categories as the VOC 2007 dataset
are chosen from original ImageNet dataset. These 20 categories are aeroplane, bicycle, bird, boat,bottle, bus,
car, cat, chair, cow, dining table, dog, horse, motorbike, person, potted plant, sheep, sofa,
train, and tv monitor. The 20-category ImageNet subset is adopted as the source domain, and the test subset of
VOC2007 is employed as the target domain. Some images of two domains are illustrated in Fig. ??. Also, the similar
experimental protocol mentioned above is used. The difference, however, is that we report the mean and standard deviation
of average precision (AP) for each category, respectively.

IThe 16 overlapping categories are backpack, bike helmet, bottle, desk lamp, desk computer, file cabinet, keyboard,
laptop computer,mobile phone,mouse,printer, projector, ring binder, ruler, speaker, and trash can.



Method Feature A—D D—A A—W W—A D—W W—D MEAN
NA VCONV 53.8(2.3) 39.3(1.7) 47.701.7) 36.3(1.6) 77.41.7) 81.3(1.5) 56.0
PCA VCONV 40.5(3.3) 38.2(2.6) 36.5(2.9) 37.8(2.9) 68.7(2.5) 70.5(2.6) 48.7
DAUME vVCONV 48.4(2.5) 35.2(1.5) 42.5(2.0) 33.6(1.8) 68.4(2.5) 74.2(2.4) 50.4
TCA vCONV 30.3(4.5) 20.1(4.4) 27.0(3.1) 18.1(3.0) 51.1(3.2) 53.0(3.2) 333
GFK VCONV 47.4(4.7) 36.2(2.9) 41.5(3.5) 33.4(2.6) 75.3(1.6) 78.0(2.4) 51.9
DIP vVCONV 36.8(4.5) 13.8(1.8) 29.6(5.0) 17.8(2.6) 77.4(1.8) 81.5(2.0) 42.8
SA vCONV 28.6(3.5) 37.12.1) 29.0(2.1) 34.9(2.9) 75.12.4) 75.12.7) 46.6
LTSL vCONV 32.0(5.5) 28.6(1.6) 24.2(3.7) 27.1(2.0) 60.9(4.0) 73.9(3.3) 41.1
LSSA vVCONV 56.6(2.0) 45.6(1.6) 52.2(1.6) 40.7(2.0) 73.0(2.1) 63.5(3.8) 55.3
CORAL vCONV 39.9(1.7) 42.7(0.9) 39.7(1.7) 40.7(1.0) 82.0(1.3) 79.5(1.4) 54.1
NTSL TCONV 56.12.4) 45.7(1.5) 50.8(2.3) 42.6(2.2) 84.4(1.6) 88.2(1.4) 61.3
TAISL TCONV 56.4(2.4) 45.9(1.1) 50.7(2.0) 43.2(1.7) 84.51.9) 88.5(1.2) 61.5

Table 1: Average multi-class recognition accuracy (%) on Office dataset over 20 trials. The highest accuracy in each column
is boldfaced, the second best is marked in red, and standard deviations are shown in parentheses.

4. Recognition results

We compare against the same methods used in the main text, including the baseline no adaptation (NA), principal compo-
nents analysis (PCA), transfer component analysis (TCA) [7], geodesic flow kernel (GFK) [4], domain-invariant projection
(DIP) [2], subspace alignment (SA) [3], low-rank transfer subspace learning (LTSL) [9], landmarks selection subspace align-
ment (LSSA) [1], and correlation alignment (CORAL) [11]. Our approach is denoted by NTSL (the naive version) and
TAISL. We also extract convolutional activations from the CONV5_3 layer of the VGG-VD-16 model [10]. We mark the
feature as VCONYV and TCONYV for vectorized and tensor-form convolutional activations, respectively. The same parameters
described in the main text are set to report the results.

Office results. Results of the Office dataset are listed in Table 1. Similar to the tendency shown by the results of Office-
Caltech10 dataset in the main text, our approach outperforms or is on par with other comparing methods. It is interesting
that sometimes NTSL even achieves better results than TAISL. We believe such results are sound, because a blind global
adaptation cannot always achieve accuracy improvement. However, it is clear that learning an invariant tensor space works
much better than learning a shared vector space. Furthermore, the joint learning effectively reduces the standard deviation
and thus improves the stability of the adaptation.

ImageNet—-VOC2007 results. Table 2 shows the complete results on ImageNet—VOC2007 dataset (only partial results are
presented in the main text due to the page limitation). Our approach achieves the best mean accuracy in 4 and the second
best in 6 out of 20 categories. In general, when noisy labels exist in the target domain, our approach demonstrates a stable
improvement in accuracy. Moreover, compared to the baseline NTSL, the standard deviation is generally reduced, which
means aligning the source domain to the target not only promotes the classification accuracy but also improves the stability
of tensor space.

5. Parameters Sensitivity

Here we investigate the sensitivity of 3 parameters involved in our approach. Specifically, they are the spatial mode
dimensionality ds (d; and d» in the main text, we assume d; = d = d;), the feature mode dimensionality d¢ (ds3 in the main
text), and the weight coefficient A. We monitor how the classification accuracy changes when these parameters vary. At each
time, only one parameter is allowed to change. By default, d; = 6, df = 128, and A = le=®. A DA task of W—C from
the Office-Caltech10 dataset is chosen. Results are illustrated by Fig. 4. According to Fig. 4, we can make the following
observations:

e In general, there exhibits a tendency for increased d to increased classification accuracy, which implies that the adaptation
can benefit from extra spatial information. This is why we preserve the original spatial mode as it is.



VOC 2007 test aero bike bird boat bottle bus car cat chair cow

NA VCONV | 66.42.1) 65329  65.64.00 56.10.00 29.52.1) 51.234) 70945  70.63.4) 19.32.00 30.38.0)

PCA VCONV | 289¢.8) 25372 30239 14.04.8 23352 15.6(63) 41.575 44945 11209  6.001.8)

Daumé IIl | VCONV | 64.13.7) 60.4@42)  59.774) 53578 26.633) 49.05.1) 66.35.1) 65753 18.6(35  26.98.5)

TCA VCONV | 432098 46.017.00 44.4005) 25.3013.00 20.7(1.7) 30477 59.58.6)  56.782) 17.13.00 16.9(6.3)

GFK VCONV | 70.06.9  66.07.6) 74.63.8) 40.7(11.8) 32.54.4) 55.06.9 71352  73.16.5 16.33.6) 28.9(5.3)

DIP VCONV | 69.8(5.5) 65.8(7.2) 78.4(4.6) 34.29.1) 29.15.00 54413 75.7(3.9) 75.93.7)  20.14.6)  25.5(5.0)

SA VCONV | 64.4¢10.1) 54.4093) 69.3(.4) 50.8127) 34.44.6) 50.865 643095 67449 11.219 18.4(6.6)

LTSL VCONV | 56.9(104) 59.86.3) 61.07.7) 50.6(15.6) 34.96.2) 50.90.6) 66936 70888 114015 21.96.3)

LSSA vCONV | 78.72.0) 71.81.5  79.7a2) 18.520) 38.414.6) 64.132) 69422 81705 57224 29.5(1.9)

CORAL VCONV | 71.4@3.3) 63.34.3) 71.7(3.6) 58.6(9.5) 35204 61.93.6) 62.7(7.1) 72.04.3) 18.727)  36.0(5.7)

NTSL TCONV | 76.34.3) 61.655  71.039  65.9@83) 357370 56.1¢7.1) 70.1¢4.8) 713332 16.6(26) 34.7(9.8)

TAISL TCONV | 76.4(.1) 62.3(4.8) 71.6(3.1) 64.97.7)  36.73.5) 57.06.6) 71.2(4.3) 72.02.1)  15.72.9) 33.3(6.6)
table dog horse mbike person plant sheep sofa train tv mAP

NA VCONV | 35755 479064 35.5014) 47.080) 69.329) 25639 44969 46953 71.844) 56433 503

PCA VCONV | 29.06.9) 32.54.6) 23.262) 25.05.00 70.2(1.9) 9.34.3) 11.733.5) 16.22.8)  29.06.7) 29.06.6) 25.8

Daumé III | VCONV | 30.054) 43.6(69 28387  40.56.6) 68.525 23.635) 37774 44.55.6) 67.6(54) 51944) 464

TCA VCONV | 27.68.7) 43.2(7.6) 29.00146) 31.8(102) 58.15.7) 11.64.5 22.78.00 24.009.4) 52389 33.6(102) 34.7

GFK VCONV | 48.3(104) 56.7(74) 59.2(16.7) 58.314.8) 75.83.6) 15.2(4.6) 52.54.8 44.76.00 79949  57.145  53.8

DIP VCONV | 42.2@.1) 53.7(5.4) 64.7(7.1) 56.3(5.7 73.53.1) 14.742) 48.94.3) 39.8(10.0) 80.55.6) 59.4(52) 53.1

SA VCONV | 36.9112.8) 54.25.7) 39.5(15.5) 53.7(109) 68.924) 20967 31.40102) 29.36.1) 73.552) 55237 474

LTSL VCONV | 43.712.4) 55474 53.4013.1) 52.5107) 69.94.3) 18.882) 3820950 2890132 67.19.9 54.007.5) 483

LSSA VCONV | 33.734) 56925  41.154)  56.309.3) 51.200 15357 325006 43484 81.114) 51.6(4.6) 52.6

CORAL VCONYV | 40.6(6.7) 53.8(5.3) 34.8(6.8) 57.3(5.6) 67.62.0) 242015 54.8(2.9) 47.716.2) T1.735) 56.93.6) 53.0

NTSL TCONV | 49.8(10.4) 58.35.1) 4090129 59.7(102) 72.04.6) 25.04.5) 53.46.00 49.84.6) 75336) 60.235 552

TAISL TCONV | 50.710.0) 57.638) 39.014.0) 60.38.7) 72.2(38) 26.6(54) 53.6(56) 49.855.6) 74249 60.43.5 553

Table 2: Average precision (%) on ImageNet-VOC2007 dataset over 10 trials. The highest AP in each column is boldfaced,
the second best is marked in red, and standard deviations are shown in parentheses.
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Figure 4: Sensitivity of tensor subspace dimensionality and weight coefficient A on the DA task of W—C.

e As per the feature mode dimensionality dy, a dramatic growth appears when dy increases from 1 to 16. However, the
classification accuracy starts to level off when d; exceeds 16. Such results make sense, because when the feature di-
mensionality is relatively small, the discriminative power of feature representations cannot be guaranteed. Overall, our
approach demonstrates stable classification performance over a wide range of feature mode dimensionality.

e Only a slight fluctuation occurs when \ varies between le~ and 1e!. The classification accuracy is virtually insensitive
to the weight coefficient A. This is another good property of our approach.
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