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Abstract

The supplementary material contains the proof of Re-
mark 3.1 as well as some additional information about the
numerical experiments that contribute to the understanding
of the main paper. We present detailed qualitative and quan-
titative evaluation results for each of our two (demosaicking
and deconvolution) exemplary linear inverse image recon-
struction problems. These results include parameter values
obtained with our grid search, reconstruction PSNR values
and images.

Proof of Remark 3.1

For the sake of readability let us restate the remark and
the four algorithms with the proximal operators of the reg-
ularization R replaced by an arbitrary continuous function
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Remark (Remark 3.1 in main Paper). Consider replacing
the proximal operator of R in the PG, ADMM, PDHGI,
and PDHG?2 methods by an arbitrary continuous function
G. Then the fixed-point equations of all four resulting algo-
rithmic schemes are equivalent, and yield

uy, =G (ux —tATVH(Au,)) (12)

with x € {PG,ADMM,PDHGI,PDHG2} and t = T for
PG and PDHG2, and t = % for ADMM and PDHGI.

Proof. For the PG-based algorithmic scheme the statement
follows immediately as (12) coincides with the update equa-
tion (1).



At fixed-points of the ADMM-based scheme, it fol-
lows from Equation (4) that uapaps = v. The opti-
mality condition for Equation (2) therefore becomes y =
fATVHf (Auaparar), such that Equation (3) shows the
fixed-point Equation (12) for the ADMM-based scheme.
Vice versa, for any given element u" meeting Equation (12)
one initializes y° = —ATVH;(Au®), and v° = u° to ob-
tain a fixed-point of the ADMM-based scheme.

At fixed-points of the PDHG1-based scheme (again vari-
ables without superscripts denoting the fixed-point), it fol-
lows from Equation (7) that y = —A”2. The optimality
condition for Equation (5) yields

O:Au—lzfAqulVHf(Au), (13)
Y v
= z = VH;(Au), (14

and inserting the resulting identity y = —ATVH(Au)
into Equation (6) shows that any fixed-point of the PDHG1-
based scheme meets Equation (12). For a given fixed-
point u® meeting Equation (12) the choices @ = uP,
20 = VHp(Au), y° = —ATVH;(Au®) yield a fixed-
point of the PDHG1-based algorithmic scheme.

Finally, for the PDHG2-based scheme Equation (10)
yields y = — ATV H;(Au), such that Equation (10) yields
the fixed-point Equation (12). Again, initializing #° = u°
with the fixed-point and setting y° = —ATVH(AuP)
results in a fixed-point of the PDHG2-based scheme and
therefore yields the assertion. O

Remark. We would like to point out that the PDHG2
algorithm is closely related to ADMM: In fact, with an over-
relaxation on the variable y, a reversed update order of v and
y,and 7 = %, 6 = 1, it is equivalent to the above ADMM
algorithm in the convex case with proximity operators, see
e.g. [1], Section 5.3. Interestingly, one can show that this
result still remains valid for our algorithmic schemes above
in which the proximity operator has been replaced by a neu-
ral network.



Evaluation
Demosaicking

We evaluated the effectiveness of our approach on noise
free demosaicking of 18 Bayer filtered images of the Mc-
Master color image dataset, [5]. For visualization pur-
poses Figure 1 presents demosaicking results obtained with
our approach applying the fixed denoising network trained
on noise with standard deviation ¢ = 0.02. The images
include a magnified area of the residual error which illus-
trates the varying demosaicking performance on differently
structured parts of the image. In completion of Figure 4
of the main paper Table 1 contains a comprehensive list of
channel-wise PSNR values for each of the 18 color images.
The superior reconstruction of the green channel can be at-
tributed to its dominance in the RGGB filter pattern. For a
full comparison of our results with the state-of-the-art meth-
ods mentioned in the main paper we refer to the supplemen-
tary material of [3] and [2].

Deconvolution

Our experimental setup consists of the five (a - ¢) decon-
volution experiments proposed in [4]. These experiments
corrupt 11 standard test images with different blur kernels
and Gaussian noise levels. Figure 2 shows the correspond-
ing dataset as well as exemplary deconvolution results ob-
tained by our approach using the fixed network trained on
noise with standard deviation o = 0.02. The corresponding
PSNR values as well as our FlexISP* results are presented
in Table 3. A detail explanation of FlexISP*, our reimple-
mentation of [3], can be found in the main paper. To illus-
trate the robustness with respect to the choice of network
we also included the results for networks trained on differ-
ent 0. For a comprehensive comparison with the methods
mentioned in the paper we again refer to the supplementary
material of [3]. For the sake of reproducibility Table 2 in-
cludes the results of our grid search for the data fidelity pa-
rameter « as well as for the regularization parameter Sy
for multiple networks.

Table 1: Channel-wise PSNRs in [dB] for each Bayer fil-
tered image of the McMaster color image dataset. Our
method applies the fixed denoising network trained on o =
0.02.

Reconstruction PSNR in [dB]
Image Channel FlexiSP™ Ours
R 28.52 29.09
1 G 31.55 32.04
B 26.71 27.01
R 33.86 34.69
2 G 38.39 39.30
B 32.18 32.85
R 32.31 34.33
3 G 35.56 36.83
B 29.80 30.81
R 35.77 38.55
4 G 39.90 41.08
B 32.92 34.47
R 34.68 35.31
5 G 37.30 37.71
B 30.67 31.65
R 37.12 39.38
6 G 41.69 43.09
B 34.40 36.44
R 35.35 35.89
7 G 38.31 38.62
B 33.55 33.85
R 35.95 38.42
8 G 40.35 41.80
B 35.56 37.18
R 34.76 36.78
9 G 40.74 41.81
B 35.78 36.86
R 37.31 37.57
10 G 41.61 41.54
B 36.62 36.90
R 38.71 39.92
11 G 41.23 42.19
B 37.90 38.54
R 37.96 38.46
12 G 40.52 41.60
B 35.56 37.22
R 40.49 42.46
13 G 44,74 45.46
B 37.84 38.68
R 38.07 39.13
14 G 42.65 43.06
B 35.88 36.25
R 36.77 37.26
15 G 42.34 42.58
B 38.42 38.90
R 32.48 34.16
16 G 34.05 35.19
B 32.61 32.65
R 31.84 33.37
17 G 36.57 37.40
B 31.77 32.30
R 32.78 34.02
18 G 36.15 36.92
B 34.17 35.09
R 35.26 36.60
AVG G 39.09 39.90
B 34.02 34.87
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Figure 1: We demosaicked 18 images of the McMaster color image dataset applying our approach with the fixed denoising
network. To illustrate the remaining reconstruction error we added magnified residual images. To avoid boundary effects the
images were cropped by 5 pixels.

Table 2: The optimal deblurring values for the data fidelity parameter v as well as for the regularization parameter Sy
with respect to our method applying denoising networks trained on different noise standard deviations o. All values were
obtained by performing and extensive grid search of the parameter space. Following Proposition 3.2 we set the dual step size
of the PDHG algorithm to v = 1.0 and determined the primal step size 7 from 7y < ¢ with ¢ being the squared norm of the
involved linear operator.

Experiment a | Experiment b | Experiment ¢ | Experiment d | Experiment e
a [ Brv a | Brv o | PBrv o [ Brv | o | Brv
0.01 1 0.00 25 0.00 40 0.05 250 | 0.01 10 0.00
002 | 2 0.00 75 0.00 4 0.00 73 0.00 | 23 0.00
003 ] 5 0.00 | 149 | 0.00 7 0.00 107 | 0.00 | 43 0.00
004 | 7 0.00 | 200 | 0.00 10 0.00 140 | 0.00 | 64 0.00
0.05 | 11 0.01 160 | 0.01 13 0.00 200 | 0.00 | 93 0.00
0.06 | 13 0.00 | 200 | 0.01 17 0.00 240 | 0.00 | 120 | 0.00
0.07 | 16 0.00 | 424 | 0.00 24 0.00 272 | 0.00 | 150 | 0.00
0.08 | 23 0.00 | 467 | 0.00 34 0.00 467 | 0.00 | 200 | 0.00
0.09 | 24 0.00 | 300 | 0.01 36 0.00 600 | 0.00 | 267 | 0.00
0.20 | 100 | 0.00 | 800 | 0.03 150 | 0.00 | 2400 | 0.00 | 480 | 0.10
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Figure 2: Our deconvolution dataset based on the experiments introduced in [4]. Each image (128 x 128 pixels) is shown
in its corrupted as well as by our approach reconstructed version. The deblurring was performed using the fixed denoising
network trained on o = 0.02. To avoid boundary effects the images were cropped by 12 pixels. For visualization purposes
we show enlarged versions of the different blur kernels.



Table 3: Imagewise PSNRs in [dB] for each of our 5 (a - €) deconvolution experiments for FlexISP* and multiple versions
of our approach using denoising networks trained on different o. Our application independent approach applied a network
trained on ¢ = 0.02.

Reconstruction PSNR in [dB]

Method Barbara | Boat | Cameraman | Couple | Fingerprint | Hill | House | Lena | Man | Montage | Peppers

FlexISP* [3] 25.93 24.44 23.65 24.16 17.43 25.83 | 2693 | 25.05 | 24.90 22.84 26.41
; Ours 26.27 | 2441 23.78 24.15 17.41 25.89 | 27.35 | 25.34 | 25.02 23.00 26.99
g Ours, 0=0.01 25.97 24.34 23.40 24.13 17.41 25.78 | 26.53 | 24.95 | 24.88 22.89 26.49
‘5 | Ours, 0=0.04 26.19 24.48 23.93 24.26 17.43 2595 | 27.38 | 2542 | 25.12 22.97 27.06
& | Ours, 0=0.06 26.32 | 24.46 23.97 24.27 17.44 2598 | 27.56 | 25.51 | 25.13 23.02 27.12
= Ours, 0=0.09 26.27 24.42 23.99 24.27 17.44 26.03 | 27.03 | 25.60 | 25.17 23.06 27.04

Ours, 0=0.20 | 26.17 24.31 23.79 24.17 17.43 25.76 | 27.32 | 25.50 | 25.03 22.85 26.95
< FlexISP* [3] 29.14 | 26.62 26.00 26.55 17.81 28.70 | 30.99 | 27.90 | 27.38 24.47 29.72
= Ours 29.38 | 26.74 26.26 26.70 17.86 28.81 | 31.43 | 28.27 | 27.58 24.70 30.13
g Ours, 0=0.01 29.36 | 26.66 26.05 26.64 17.82 28.87 | 31.24 | 28.17 | 27.60 24.55 30.19
‘5 | Ours, 0=0.04 2940 | 26.70 26.28 26.71 17.85 28.82 | 31.52 | 28.40 | 27.64 24.66 30.14
£ | Ours, 0=0.06 29.52 | 26.79 26.37 26.74 17.83 2891 | 31.39 | 28.37 | 27.74 24.62 30.27
= Ours, 0=0.09 29.49 26.77 26.32 26.70 17.84 28.86 | 31.60 | 28.39 | 27.72 24.51 30.24

Ours, 0=0.20 | 29.13 26.33 25.17 26.42 17.75 28.51 | 30.63 | 27.98 | 27.38 23.80 29.79

FlexISP* [3] 23.24 | 22.11 21.01 22.04 17.04 23.05 | 23.57 | 22.57 | 22.43 21.38 23.47
; Ours 23.12 | 22.01 20.85 21.93 17.02 23.12 | 22.77 | 2243 | 2249 21.22 23.19
QE) Ours, 0=0.01 22.49 21.77 20.96 21.75 17.07 22.83 | 22.64 | 22.02 | 22.27 2091 22.51
‘5 | Ours,0=0.04 | 23.03 22.18 21.20 21.89 17.03 23.12 | 23.26 | 22.64 | 22.41 21.43 23.29
& | Ours, 0=0.06 23.02 | 22.23 21.27 21.98 17.06 23.18 | 23.62 | 22.51 | 22.49 21.40 23.56
= Ours, 0=0.09 23.15 22.20 21.19 21.93 17.09 23.12 | 23.50 | 22.28 | 22.53 21.33 23.45

Ours, 0=0.20 | 23.07 22.21 21.42 21.97 17.06 23.04 | 23.20 | 22.48 | 22.63 21.32 23.57
< FlexISP* [3] 23.13 | 22.92 21.92 22.87 17.44 23.88 | 24.95 | 22.57 | 22.33 22.19 23.59
= Ours 22.48 22.45 20.89 22.69 17.38 23.53 | 2337 | 22.22 | 21.97 21.64 22.90
QE) Ours, 0=0.01 21.81 22.08 20.71 22.40 17.25 2298 | 23.01 | 21.52 | 21.62 21.30 22.03
‘5 | Ours, 0=0.04 22.97 22.66 21.78 22.77 17.37 23.78 | 2491 | 22.51 | 22.23 22.07 23.33
£ | Ours, 0=0.06 23.21 22.71 21.83 22.81 17.39 23.87 | 25.57 | 22.71 | 22.39 22.19 23.70
= Ours, 0=0.09 23.19 22.76 21.85 22.81 17.37 23.87 | 2548 | 22.63 | 22.39 22.64 23.66

Ours, 0=0.20 3142 | 29.28 30.50 28.78 23.80 29.57 | 33.06 | 30.73 | 29.24 31.29 31.94
N FlexISP* [3] 30.60 | 28.54 29.19 28.27 23.59 29.31 | 32.65 | 29.93 | 28.49 30.63 31.13
= Ours 31.67 | 29.24 30.84 28.85 23.42 29.69 | 33.38 | 30.80 | 29.15 32.45 32.36
‘LE’ Ours, 0=0.01 29.86 | 28.69 29.14 28.02 22.19 29.28 | 31.28 | 29.36 | 28.35 29.70 30.65
‘5 | Ours, 0=0.04 31.75 29.51 30.99 28.88 24.20 29.80 | 33.65 | 30.93 | 29.37 32.49 32.28
£ | Ours, 0=0.06 31.73 29.48 30.80 28.85 24.14 29.75 | 33.37 | 30.91 | 29.40 32.22 3221
= Ours, 0=0.09 3142 | 29.28 30.50 28.78 23.80 29.57 | 33.06 | 30.73 | 29.24 31.29 31.94

Ours, 0=0.20 | 28.33 25.86 2542 25.31 18.37 27.63 | 27.78 | 27.10 | 26.48 24.39 27.08
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