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Supplementary Materials

1. Contents

The supplementary materials contain auxiliary experiments
for the empirical analyses in the main paper. In particular,
we include:

e Score loss for adversarial image perturbation (AIP).
e AIP performance at different Ly norms.
e Experiments for the non-GoogleNet architectures.

e More qualitative results.

As in the main paper, we mark the optimal entry in each
column (row) for the user (recogniser) with orange (blue).

2. Score Loss for AIPs

In the main paper, we have reviewed variants of AIPs
according to the loss functions and the optimisation al-
gorithms.  Algorithms FGV, FGS, BI, and GA use the
softmax-log loss — log fy The DeepFool (DF) and our
GAMAN variants use the difference of two scores (e.g. f¥ —
fY). This section includes an auxiliary analysis for the ef-
fect of the loss type: softmax-log loss — log fy Versus score
loss — f¥. We denote the score loss analogues with the suf-
fix -S (e.g. FGS-S). We also include FGMAN (Fast Gradient —
Maximal Among Non-GT), the single iteration analogue of
GAMAN, for completeness. See table | for a summary.

The corresponding empirical performances are shown in
table 2 and 4. Since single-iteration AIPs are significantly
outperformed by the multi-iteration AIPs, we have focused
on the latter in the main paper, and so do we here. In table
2, we observe that the choice of the loss function does not
make much difference. Table 4 further supports this view
against image processing techniques, although the softmax-
log loss does perform marginally better.

3. AIP Performance at Different ., Norms

In the main paper, we have used the L, norm constraint
€ = 1000 as the default choice. In this section, we examine
the behaviour of AIP performance at varying € values.

Variants Loss £ f;ﬁgillgi Step size
FGS[1] —log fv 1 iteration Fixed
FGV[4] —log fv 1 iteration Fixed
FGS-S —fv 1 iteration Fixed
FGV-S —fv 1 iteration Fixed
FGMAN v — fy 1 iteration Fixed
BI[2] —log f Y K iterations Fixed

GA —log f Y K iterations Fixed
BI-S —fY K iterations Fixed
GA-S —fv K iterations Fixed
DF[3] fY°—fY KitVfooled Adaptive

GAMAN fY" — f¥ K iterations Fixed

Table 1: Extended version of table ?? in the main paper; ad-
ditional methods are denoted as gray cells. f v" is the model
score for class 4, and f denotes the softmax output of f.
y is the ground truth label, and y* is the most likely label
among wrong ones. y° is the label with the closest linear-
ised decision boundary. g is the least likely label.

See figure 1 for the plot. The performances are post-Proc
(85.3 in the main paper). We fix the step size to v = 10*
(5 x 103 for GAMAN), and the maximal number of itera-
tions to X = 100; we choose the norm constraint € from
{100, 200, 500, 1000, 2000}. The norm of the resulting ATP
is upper bounded by ¢, but may not necessarily be exactly e.
The average norm across the test set is plotted.

We observe that the AIP variants are much more effect-
ive than Noise, Blur, or Eye Bar, achieving the same de-
gree of obfuscation at 1 ~ 2 orders of magnitude smaller
perturbations. At the same norm level, the multi-iteration
variants (BI,GA) are more effective than the single-iteration
analogues (FGS,FGV). Taking gradient signs decreases the
obfuscation performance at small Lo norms (< 1000), but
they converge to a similar performance at e = 2000. Deep-



Perturbation AlexNet VGG Google ResNet

None 838 86.1 878 911
o .  Noise >83  >85 >87 290
g 8 Blur >82  >85 >86 >90
E & Eye Bar >81 >84 >84  >87
FGS[!] 236 160 59 202

5, _ FOVI 133 115 46 200
=2 FGSS 278 62 10 43
FGV-S 210 55 35 80

FGMAN 44 39 28 115

BI[2] 12 05 00 00

, GA 02 00 00 00

8e  BIS 12 03 00 00
e GA-S 02 00 00 00
DF[3] 00 00 00 00

GAMAN 00 00 00 00

Table 2: Extended version of table ?? in the main paper;
new entries are denoted as gray cells. Recognition rates
after image perturbation. In all methods, the perturbation
is restricted to || - ||]2 < 1000. For the baseline image
processing perturbations, we only report lower bounds (de-
noted > - ).
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Figure 1: GoogleNet accuracy after various perturbations
methods at different L, norms. All results are after Proc.

Fool (DF) outputs have small norms < 100 due to early
stopping. Our variant GAMAN performs best across all norm
levels, achieving nearly zero recognition at e = 2000.

4. Non-GoogleNet Experiments

In the main paper, we have focused on the GoogleNet res-
ults for the AIP robustness analysis and the game theoretic
studies (table 3 and 4 in the main paper). We extend the

experiments to AlexNet, VGG, and ResNet152.

4.1. Robustness Analysis

See table 4 for the robustness analyses for all four networks.
We confirm here again that GAMAN shows overall best ro-
bustness, across image processing techniques (Proc, T, N,
B, C, and TNBC), across architectures. For AlexNet and
ResNet, cropping (C) is the most powerful neutralisation,
while for VGG and GoogleNet blurring (B) is. We observe
that the effects are particularly strong for ResNet; C boosts
the performance from 0.0 to 31.8 against GAMAN.

4.2. Game Analysis for Various Networks

See table 5 for the payoff tables for all four networks.
We summarise the optimal user strategy 6** and the cor-
responding guarantee on the recognition rate in table 3.
Note that against all but AlexNet architecture, the optimal
strategy 6“* is given as a mixture of /B and /TNBC.

Network Optimal Strategy 9“* Eggn}i :l)tz
AlexNet (/B : 100%) <64

VGG (/B :86%, /TNBC : 14%) <49
GoogleNet (/B : 61%, /TNBC : 39%)  <7.3
ResNet  (/B:31%,/TNBC: 69%) <8.5

Table 3: Optimal strategies and the corresponding guaran-
teed upper bounds on the recognition rate for different net-
works. We write < - to denote the upper bound.

5. Additional Qualitative Results

We include more qualitative results (equivalent to figure 3
in the main paper). See figures 2, 3, 4, 5.
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AlexNet

Perturb 0 Proc T N B C TNBC
None 83.8 83.8 837 77.8 78.7 80.1 83.9
BI[2] 12 100 297 208 266 343 233
GA 02 48 136 11.6 17.7 178 12.2
BI-S 12 10.1 312 21.0 272 357 233
GA-S 02 50 154 126 19.0 193 128
DF[3] 0.0 621 765 685 694 750 747
GAMAN 00 14 64 92 135 123 5.6
VGG
Perturb  Proc T N B C TNBC
None 86.1 86.1 84.8 77.2 815 84.1 85.8
BI[2] 05 68 11.1 181 232 168 144
GA 00 42 55 112 172 102 82
BI-S 03 7.1 112 192 238 173 14.3
GA-S 00 48 59 119 18.6 113 8.8
DF[3] 0.0 533 663 659 694 692 714
GAMAN 00 16 21 85 11.8 5.6 3.5
GoogleNet
Perturb @ Proc T N B C TNBC
None 87.8 87.8 87.6 64.0 81.2 854 873
BI[2] 00 83 158 16.8 28.6 274 17.6
GA 00 86 132 14.1 284 237 164
BI-S 00 88 172 177 29.3 288 18.8
GA-S 00 9.1 149 152 293 255 18.0
DF[3] 0.0 518 75.6 565 725 769 755
GAMAN 00 40 6.6 150 222 167 9.9
ResNet

Perturb @ Proc T N B C TNBC
None 91.1 91.1 90.6 72.0 87.2 89.3 90.8
BI[2] 0.0 109 36.8 248 32.8 453 26.3
GA 0.0 152 373 244 36.9 437 28.9
BI-S 0.0 13.0 434 274 358 515 29.9
GA-S 0.0 194 45.0 27.1 40.2 503 333
DF[3] 0.0 529 83.1 650 76.8 84.2 80.9
GAMAN 00 73 234 233 282 318 184

Table 4: Extended version of table ?? in the main paper for
all four network architectures; additional AIP entries are de-
noted as gray cells. Robustness analysis of AIPs for various
convnet architectures. AIPs are restricted to || - |2 < 1000.

(T, N, B, C) = (Translate, Noise, Blur, Crop).

AlexNet
Recogniser ©"
User O Proc T N B C TNBC
GAMAN 14 64 92 135 123 5.6
/T 09 08 62 105 27 22
/N 1.2 42 48 11.7 95 39
/B 08 35 63 64 60 26
/C 24 25 92 131 13 34
/TNBC 06 12 45 78 29 1.9
VGG
Recogniser ©"
User O Proc T N B C TNBC
GAMAN 1.6 21 85 11.8 56 35
/T 1.5 12 81 123 32 28
/N 20 25 39 126 67 39
/B 03 07 50 45 22 12
/C 20 1.6 95 140 19 3.1
/TNBC 06 07 43 73 23 14
GoogleNet
Recogniser ©"
User O Proc T N B C TNBC
GAMAN 40 6.6 150 222 16.7 99
/T 25 23 116 185 72 49
/N 58 76 46 236 166 9.1
/B 04 08 86 58 3.1 1.4
/C 26 22 11.8 181 34 43
/TNBC 07 09 52 95 32 20
ResNet
Recogniser ©"
User O Proc T N B C TNBC
GAMAN 73 234 233 282 318 184
/T 29 28 166 190 54 58
/N 53 129 42 235 201 102
/B 06 31 130 68 53 24
/C 35 31 170 188 32 54
/TNBC 07 12 65 93 29 23

Table 5: Extended version of table ?? in the main paper for
all four network architectures. Recogniser’s payoff table
pij, © € O, j € O, for various convnet architectures. The
user’s payoff is given by 100 — p;;.
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Figure 2: Randomly chosen perturbed images after Proc and the corresponding GoogleNet predictions (green for correct,
red for wrong). Perturbations are visualised with gray background. GA and GAMAN reliably confuse the classifier at almost no
cost on the aesthetics. As the Lo norm increases, artifacts become more visible. Perturbations may be too small to be visible
when printed; zoom in in electronic version for better visibility.
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Figure 3: Randomly chosen perturbed images after Proc and the corresponding GoogleNet predictions (green for correct,
red for wrong). Perturbations are visualised with gray background. GA and GAMAN reliably confuse the classifier at almost no
cost on the aesthetics. As the Lo norm increases, artifacts become more visible. Perturbations may be too small to be visible
when printed; zoom in in electronic version for better visibility.
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Figure 4: Randomly chosen perturbed images after Proc and the corresponding GoogleNet predictions (green for correct,
red for wrong). Perturbations are visualised with gray background. GA and GAMAN reliably confuse the classifier at almost no
cost on the aesthetics. As the L, norm increases, artifacts become more visible. Perturbations may be too small to be visible
when printed; zoom in in electronic version for better visibility.
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Figure 5: Randomly chosen perturbed images after Proc and the corresponding GoogleNet predictions (green for correct,
red for wrong). Perturbations are visualised with gray background. GA and GAMAN reliably confuse the classifier at almost no
cost on the aesthetics. As the Ly norm increases, artifacts become more visible. Perturbations may be too small to be visible
when printed; zoom in in electronic version for better visibility.



