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1. Contents
The supplementary materials contain auxiliary experiments
for the empirical analyses in the main paper. In particular,
we include:

• Score loss for adversarial image perturbation (AIP).

• AIP performance at different L2 norms.

• Experiments for the non-GoogleNet architectures.

• More qualitative results.

As in the main paper, we mark the optimal entry in each
column (row) for the user (recogniser) with orange (blue).

2. Score Loss for AIPs
In the main paper, we have reviewed variants of AIPs
according to the loss functions and the optimisation al-
gorithms. Algorithms FGV, FGS, BI, and GA use the
softmax-log loss − log f̂y . The DeepFool (DF) and our
GAMAN variants use the difference of two scores (e.g. fy

? −
fy). This section includes an auxiliary analysis for the ef-
fect of the loss type: softmax-log loss− log f̂y versus score
loss −fy . We denote the score loss analogues with the suf-
fix -S (e.g. FGS-S). We also include FGMAN (Fast Gradient –
Maximal Among Non-GT), the single iteration analogue of
GAMAN, for completeness. See table 1 for a summary.

The corresponding empirical performances are shown in
table 2 and 4. Since single-iteration AIPs are significantly
outperformed by the multi-iteration AIPs, we have focused
on the latter in the main paper, and so do we here. In table
2, we observe that the choice of the loss function does not
make much difference. Table 4 further supports this view
against image processing techniques, although the softmax-
log loss does perform marginally better.

3. AIP Performance at Different L2 Norms
In the main paper, we have used the L2 norm constraint
ε = 1000 as the default choice. In this section, we examine
the behaviour of AIP performance at varying ε values.

Variants Loss L Stopping Step sizecondition

FGS[1] − log f̂y 1 iteration Fixed

FGV[4] − log f̂y 1 iteration Fixed

FGS-S −fy 1 iteration Fixed
FGV-S −fy 1 iteration Fixed

FGMAN fy
? − fy 1 iteration Fixed

BI[2] − log f̂y K iterations Fixed

GA − log f̂y K iterations Fixed

BI-S −fy K iterations Fixed
GA-S −fy K iterations Fixed

DF[3] fy
c − fy K it.∨ fooled Adaptive

GAMAN fy
? − fy K iterations Fixed

Table 1: Extended version of table ?? in the main paper; ad-
ditional methods are denoted as gray cells. fy

′
is the model

score for class y′, and f̂ denotes the softmax output of f .
y is the ground truth label, and y? is the most likely label
among wrong ones. yc is the label with the closest linear-
ised decision boundary. ỹ is the least likely label.

See figure 1 for the plot. The performances are post-Proc
(§5.3 in the main paper). We fix the step size to γ = 104

(5 × 103 for GAMAN), and the maximal number of itera-
tions to K = 100; we choose the norm constraint ε from
{100, 200, 500, 1000, 2000}. The norm of the resulting AIP
is upper bounded by ε, but may not necessarily be exactly ε.
The average norm across the test set is plotted.

We observe that the AIP variants are much more effect-
ive than Noise, Blur, or Eye Bar, achieving the same de-
gree of obfuscation at 1 ∼ 2 orders of magnitude smaller
perturbations. At the same norm level, the multi-iteration
variants (BI,GA) are more effective than the single-iteration
analogues (FGS,FGV). Taking gradient signs decreases the
obfuscation performance at small L2 norms (≤ 1000), but
they converge to a similar performance at ε = 2000. Deep-
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Perturbation AlexNet VGG Google ResNet

None 83.8 86.1 87.8 91.1

Im
ag

e
Pr

oc
. Noise ≥83 ≥85 ≥87 ≥90

Blur ≥82 ≥85 ≥86 ≥90
Eye Bar ≥81 ≥84 ≥84 ≥87

1-
It

er
.

A
IP

FGS[1] 23.6 16.0 5.9 20.2
FGV[4] 13.3 11.5 4.6 20.0
FGS-S 27.8 6.2 1.0 4.3
FGV-S 21.0 5.5 3.5 8.0
FGMAN 4.4 3.9 2.8 11.5

K
-I

te
r.

A
IP

BI[2] 1.2 0.5 0.0 0.0
GA 0.2 0.0 0.0 0.0
BI-S 1.2 0.3 0.0 0.0
GA-S 0.2 0.0 0.0 0.0
DF[3] 0.0 0.0 0.0 0.0
GAMAN 0.0 0.0 0.0 0.0

Table 2: Extended version of table ?? in the main paper;
new entries are denoted as gray cells. Recognition rates
after image perturbation. In all methods, the perturbation
is restricted to || · ||2 ≤ 1000. For the baseline image
processing perturbations, we only report lower bounds (de-
noted ≥ · ).
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Figure 1: GoogleNet accuracy after various perturbations
methods at different L2 norms. All results are after Proc.

Fool (DF) outputs have small norms ≤ 100 due to early
stopping. Our variant GAMAN performs best across all norm
levels, achieving nearly zero recognition at ε = 2000.

4. Non-GoogleNet Experiments

In the main paper, we have focused on the GoogleNet res-
ults for the AIP robustness analysis and the game theoretic
studies (table 3 and 4 in the main paper). We extend the

experiments to AlexNet, VGG, and ResNet152.

4.1. Robustness Analysis

See table 4 for the robustness analyses for all four networks.
We confirm here again that GAMAN shows overall best ro-
bustness, across image processing techniques (Proc, T, N,
B, C, and TNBC), across architectures. For AlexNet and
ResNet, cropping (C) is the most powerful neutralisation,
while for VGG and GoogleNet blurring (B) is. We observe
that the effects are particularly strong for ResNet; C boosts
the performance from 0.0 to 31.8 against GAMAN.

4.2. Game Analysis for Various Networks

See table 5 for the payoff tables for all four networks.
We summarise the optimal user strategy θu? and the cor-
responding guarantee on the recognition rate in table 3.
Note that against all but AlexNet architecture, the optimal
strategy θu? is given as a mixture of /B and /TNBC.

Network Optimal Strategy θu? Bound on
Rec. Rate

AlexNet (/B : 100%) ≤6.4
VGG (/B : 86%, /TNBC : 14%) ≤4.9

GoogleNet (/B : 61%, /TNBC : 39%) ≤7.3
ResNet (/B : 31%, /TNBC : 69%) ≤8.5

Table 3: Optimal strategies and the corresponding guaran-
teed upper bounds on the recognition rate for different net-
works. We write ≤ · to denote the upper bound.

5. Additional Qualitative Results
We include more qualitative results (equivalent to figure 3
in the main paper). See figures 2, 3, 4, 5.
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AlexNet
Perturb ∅ Proc T N B C TNBC

None 83.8 83.8 83.7 77.8 78.7 80.1 83.9
BI[2] 1.2 10.0 29.7 20.8 26.6 34.3 23.3
GA 0.2 4.8 13.6 11.6 17.7 17.8 12.2
BI-S 1.2 10.1 31.2 21.0 27.2 35.7 23.3
GA-S 0.2 5.0 15.4 12.6 19.0 19.3 12.8
DF[3] 0.0 62.1 76.5 68.5 69.4 75.0 74.7
GAMAN 0.0 1.4 6.4 9.2 13.5 12.3 5.6

VGG
Perturb ∅ Proc T N B C TNBC

None 86.1 86.1 84.8 77.2 81.5 84.1 85.8
BI[2] 0.5 6.8 11.1 18.1 23.2 16.8 14.4
GA 0.0 4.2 5.5 11.2 17.2 10.2 8.2
BI-S 0.3 7.1 11.2 19.2 23.8 17.3 14.3
GA-S 0.0 4.8 5.9 11.9 18.6 11.3 8.8
DF[3] 0.0 53.3 66.3 65.9 69.4 69.2 71.4
GAMAN 0.0 1.6 2.1 8.5 11.8 5.6 3.5

GoogleNet
Perturb ∅ Proc T N B C TNBC

None 87.8 87.8 87.6 64.0 81.2 85.4 87.3
BI[2] 0.0 8.3 15.8 16.8 28.6 27.4 17.6
GA 0.0 8.6 13.2 14.1 28.4 23.7 16.4
BI-S 0.0 8.8 17.2 17.7 29.3 28.8 18.8
GA-S 0.0 9.1 14.9 15.2 29.3 25.5 18.0
DF[3] 0.0 51.8 75.6 56.5 72.5 76.9 75.5
GAMAN 0.0 4.0 6.6 15.0 22.2 16.7 9.9

ResNet
Perturb ∅ Proc T N B C TNBC

None 91.1 91.1 90.6 72.0 87.2 89.3 90.8
BI[2] 0.0 10.9 36.8 24.8 32.8 45.3 26.3
GA 0.0 15.2 37.3 24.4 36.9 43.7 28.9
BI-S 0.0 13.0 43.4 27.4 35.8 51.5 29.9
GA-S 0.0 19.4 45.0 27.1 40.2 50.3 33.3
DF[3] 0.0 52.9 83.1 65.0 76.8 84.2 80.9
GAMAN 0.0 7.3 23.4 23.3 28.2 31.8 18.4

Table 4: Extended version of table ?? in the main paper for
all four network architectures; additional AIP entries are de-
noted as gray cells. Robustness analysis of AIPs for various
convnet architectures. AIPs are restricted to || · ||2 ≤ 1000.
(T,N,B,C) = (Translate, Noise, Blur, Crop).

AlexNet
Recogniser Θr

User Θu Proc T N B C TNBC

GAMAN 1.4 6.4 9.2 13.5 12.3 5.6
/T 0.9 0.8 6.2 10.5 2.7 2.2
/N 1.2 4.2 4.8 11.7 9.5 3.9
/B 0.8 3.5 6.3 6.4 6.0 2.6
/C 2.4 2.5 9.2 13.1 1.3 3.4

/TNBC 0.6 1.2 4.5 7.8 2.9 1.9

VGG
Recogniser Θr

User Θu Proc T N B C TNBC

GAMAN 1.6 2.1 8.5 11.8 5.6 3.5
/T 1.5 1.2 8.1 12.3 3.2 2.8
/N 2.0 2.5 3.9 12.6 6.7 3.9
/B 0.3 0.7 5.0 4.5 2.2 1.2
/C 2.0 1.6 9.5 14.0 1.9 3.1

/TNBC 0.6 0.7 4.3 7.3 2.3 1.4

GoogleNet
Recogniser Θr

User Θu Proc T N B C TNBC

GAMAN 4.0 6.6 15.0 22.2 16.7 9.9
/T 2.5 2.3 11.6 18.5 7.2 4.9
/N 5.8 7.6 4.6 23.6 16.6 9.1
/B 0.4 0.8 8.6 5.8 3.1 1.4
/C 2.6 2.2 11.8 18.1 3.4 4.3

/TNBC 0.7 0.9 5.2 9.5 3.2 2.0

ResNet
Recogniser Θr

User Θu Proc T N B C TNBC

GAMAN 7.3 23.4 23.3 28.2 31.8 18.4
/T 2.9 2.8 16.6 19.0 5.4 5.8
/N 5.3 12.9 4.2 23.5 20.1 10.2
/B 0.6 3.1 13.0 6.8 5.3 2.4
/C 3.5 3.1 17.0 18.8 3.2 5.4

/TNBC 0.7 1.2 6.5 9.3 2.9 2.3

Table 5: Extended version of table ?? in the main paper for
all four network architectures. Recogniser’s payoff table
pij , i ∈ Θu, j ∈ Θr, for various convnet architectures. The
user’s payoff is given by 100− pij .



Original Blur GA DF[3] GAMAN GAMAN GAMAN

L2 = 0 L2 = 7425 L2 = 1000 L2 = 0 L2 = 1000 L2 = 2000 L2 = 3000

L2 = 0 L2 = 1865 L2 = 1000 L2 = 51 L2 = 1000 L2 = 2000 L2 = 3000

L2 = 0 L2 = 4067 L2 = 1000 L2 = 12 L2 = 1000 L2 = 2000 L2 = 3000

Figure 2: Randomly chosen perturbed images after Proc and the corresponding GoogleNet predictions (green for correct,
red for wrong). Perturbations are visualised with gray background. GA and GAMAN reliably confuse the classifier at almost no
cost on the aesthetics. As the L2 norm increases, artifacts become more visible. Perturbations may be too small to be visible
when printed; zoom in in electronic version for better visibility.



Original Blur GA DF[3] GAMAN GAMAN GAMAN

L2 = 0 L2 = 7957 L2 = 1000 L2 = 52 L2 = 1000 L2 = 2000 L2 = 3000

L2 = 0 L2 = 5071 L2 = 1000 L2 = 185 L2 = 1000 L2 = 2000 L2 = 3000

L2 = 0 L2 = 5123 L2 = 1000 L2 = 144 L2 = 1000 L2 = 2000 L2 = 3000

Figure 3: Randomly chosen perturbed images after Proc and the corresponding GoogleNet predictions (green for correct,
red for wrong). Perturbations are visualised with gray background. GA and GAMAN reliably confuse the classifier at almost no
cost on the aesthetics. As the L2 norm increases, artifacts become more visible. Perturbations may be too small to be visible
when printed; zoom in in electronic version for better visibility.



Original Blur GA DF[3] GAMAN GAMAN GAMAN

L2 = 0 L2 = 5365 L2 = 1000 L2 = 138 L2 = 1000 L2 = 2000 L2 = 3000

L2 = 0 L2 = 3813 L2 = 1000 L2 = 89 L2 = 1000 L2 = 2000 L2 = 3000

L2 = 0 L2 = 6539 L2 = 1000 L2 = 113 L2 = 1000 L2 = 2000 L2 = 3000

Figure 4: Randomly chosen perturbed images after Proc and the corresponding GoogleNet predictions (green for correct,
red for wrong). Perturbations are visualised with gray background. GA and GAMAN reliably confuse the classifier at almost no
cost on the aesthetics. As the L2 norm increases, artifacts become more visible. Perturbations may be too small to be visible
when printed; zoom in in electronic version for better visibility.



Original Blur GA DF[3] GAMAN GAMAN GAMAN

L2 = 0 L2 = 2586 L2 = 1000 L2 = 75 L2 = 1000 L2 = 2000 L2 = 3000

L2 = 0 L2 = 4855 L2 = 1000 L2 = 153 L2 = 1000 L2 = 2000 L2 = 3000

L2 = 0 L2 = 5018 L2 = 1000 L2 = 0 L2 = 1000 L2 = 2000 L2 = 3000

Figure 5: Randomly chosen perturbed images after Proc and the corresponding GoogleNet predictions (green for correct,
red for wrong). Perturbations are visualised with gray background. GA and GAMAN reliably confuse the classifier at almost no
cost on the aesthetics. As the L2 norm increases, artifacts become more visible. Perturbations may be too small to be visible
when printed; zoom in in electronic version for better visibility.


