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1. Bounding the differential ∂g(x)
In this section we prove the growth estimate given in

Lemma 3.2 (of the main paper). Recall that the sub-
differential of g is given by

∂g(x) =


{2x} |x| ≥ √µ
{2√µsign(x)} 0 < |x| ≤ √µ
[−2
√
µ, 2
√
µ] x = 0

. (1)

Lemma S.1. Assume that 2z ∈ ∂g(x). If

|zi| >
√
µ

1− δc
(2)

then for any z′ with 2z′ ∈ ∂g(x + v) we have

z′i − zi > δcvi if vi > 0 (3)

and
z′i − zi < δcvi if vi < 0. (4)

Proof. We first assume that xi > 0. Because of (2) and (1)
we have xi = zi >

√
µ

1−δc . There are now two possibilities:

• If vi > 0 then xi + vi >
√
µ and by (1) we therefore

must have that z′i = xi + vi = zi + vi > zi + δcvi.

• If vi < 0 we consider the line

l(x) = 2zi + 2δc(x− xi). (5)

See the left graph of Figure 1. We will show that this
line is an upper bound on the sub-gradients for all vi <
0.

We note that for x < xi we have

l(x) = 2zi − 2xi︸ ︷︷ ︸
=0

+ 2(1− δc)xi︸ ︷︷ ︸
>2(1−δc)x

+2δcx > 2x. (6)

Furthermore

l(x) = 2(1− δc)xi + 2δcx > 2
√
µ+ 2δcx. (7)

The right hand side is clearly larger than both 2
√
µ for

x ≥ 0. For −√µ ≤ x ≤ 0 we have 2
√
µ + 2δcx >

2
√
µ+2x ≥ 0 ≥ −2

√
µ. This shows that the line l(x)

is an upper bound on the subgradients of g for every
x < xi, that is l(xi+vi) > 2z′i for all vi < 0 and since
l(xi + vi) = 2zi + 2δcvi we get 2z′i < 2zi + 2δcvi.

The proof for the case xi < 0 is similar.

Lemma S.2. Assume that 2z ∈ ∂g(x). If

|zi| < (1− δc)
√
µ (8)

then for any z′ with 2z′ ∈ ∂g(x + v) we have

z′i − zi > δcvi if vi > 0 (9)

and
z′i − zi < δcvi if vi < 0. (10)

Proof. By (8) we see that xi = 0. We first assume that
vi > 0 and consider the line l(x) = 2zi + 2δcx, see the
right graph of Figure 1. We have that

l(x) < 2(1− δc)
√
µ+ 2δcx. (11)

The right hand side is less than 2(1 − δc)
√
µ + 2δc

√
µ =

2
√
µ when 0 < x ≤ √µ and less than 2(1− δc)x+ 2δcx =

2x when x >
√
µ. Therefore l(x) is a lower bound on the

subgradients of g for all x > 0 which gives l(vi) < 2z′i
for vi > 0 and since l(vi) = 2zi + 2δcvi we get 2z′i >
2zi + 2δcvi. The case vi < 0 is similar.

Proof of Lemma 3.2. The proof of the growth estimate is
now an immediate consequence of the previous two results.
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Figure 1: Illustration of the subdifferential ∂g(x) and the line l(x), when (2) holds (left) and when (8) holds (right).

Under the assumptions of Lemma 3.2 we have according to
Lemmas 1 and 2 that

(z′i − zi)vi > δcv
2
i , (12)

for all i with vi 6= 0. Since vi = 0 gives (z′i − zi)vi = 0
summing over i gives

〈z′ − z,v〉 > δc‖v‖2, (13)

as long as ‖v‖ 6= 0.

A one dimensional example. We conclude this section
with a simple one dimensional example which shows that
the bounds (2) and (8) cannot be made sharper. Figure 2
shows the function r1(x) + ( 1√

2
x− b)2 for different values

of b ≥ 0. It is not difficult to verify that this function can
have three stationary points (when b ≥ 0). The point x = 0
is stationary if b ≤

√
2, x = 2 −

√
2b if 1√

2
< b <

√
2

and x =
√

2b if b ≥ 1√
2

, see Figure 2. For this example
A = 1√

2
and therefore (1 − δ)|x|2 ≤ |Ax|2 ≤ (1 + δ)|x|2

holds with 1− δ = 1
2 .

Now suppose that b ≤
√

2 and that we, using some algo-
rithm, find the stationary point x = 0. We then have

z = (1−ATA)x+AT b =
1√
2
b. (14)

Theorem 3.3 now tells us that x = 0 is the unique stationary
point if

1√
2
b /∈

[
1− δ, 1

1− δ

]
⇔ b /∈

[
1√
2
, 2
√

2

]
. (15)

Note that the lower interval bound b < 1√
2

is precisely when
x = 0 is unique, see the leftmost graph in Figure 2.

Similarly suppose that b ≥ 1√
2

. For the point x =
√

2b
we get

1

2
z = (1−ATA)x+AT b =

1

2

√
2b+

1√
2
b =
√

2b. (16)

Theorem 3.3 now shows that x =
√

2b is unique if

√
2b /∈

[
1− δ, 1

1− δ

]
⇔ b /∈

[
1

2
√

2
,
√

2

]
. (17)

Here the upper interval bound b >
√

2 is precisely when
x =
√

2b is unique, see rightmost graph in Figure 2. Hence
for this example Theorem 3.3 is tight in the sense that it
would be able to verify uniqueness of the stationary point
for every b where this holds.

2. Sparsity Experiments

In this section we evaluate the proposed sparsity formu-
lation on synthetic data. We compare the two formulations

µ′‖x‖1 + ‖Ax− b‖2. (18)
rµ(x) + ‖Ax− b‖2 (19)

for low rank recovery for varying regularization strengths
µ and µ′. Similarly to the rank case, the proximal operator
of the `1-norm, arg minx µ

′‖x‖1 +‖x−z‖2, performs soft
thresholding at µ

′

2 while that of rµ, arg minx µrµ(x)+‖x−
z‖2, thresholds at

√
µ [3]. We therefore use µ′ = 2

√
µ in

(18).

2.1. Optimization

For minimizing (19) we use a GIST [2] approach similar
to the one described for low rank recovery. In each step we



b = 0 b = 1√
2

b = 1 b =
√

2 b = 1.5

Figure 2: The function r1(x) + ( 1√
2
x − b)2 and its stationary points (red) for different values of b. When b is close to the

threshold 1 the function has multiple stationary points.

find xk+1 by minimizing

rµ(x) + τk

∥∥∥∥∥∥∥∥x−
(
xk −

1

τk
(ATAxk −ATb)

)
︸ ︷︷ ︸

:=m

∥∥∥∥∥∥∥∥
2

. (20)

The optimization is separable and for each element xi we
minimize −max(

√
µ − |xi|, 0)2 + τk(xi − mi)

2. It is
easy to show that there are four possible choices xi = mi,
xi =

τkmi±
√
µ

τk−1 and xi = 0 that can be optimal. In our
implementation we simply test which one of these yields
the smallest objective value. (If τk = 1 it is enough to test
xi = mi and xi = 0.) For initialization we use x0 = 0.

2.2. Sparse Recovery

For Figure 3 (a)-(c) we randomly generated problem in-
stances for sparse recovery. Each instance uses a matrix A
of size 200×200 with δ = 0.2 which was generated by first
randomly sampling the elements of a matrix Ã a Gaussian
N (0, 1) distribution. The matrix A was then constructed
from Ã by modifying the singular values to be evenly dis-
tributed between

√
1− δ and

√
1 + δ. To generate a ground

truth solution and a b vector we then randomly select values
for 10 nonzero elements of x and computed b = Ax + ε,
where all elements of ε are N (0, σ2).

The averaged results (over 50 random instances for each
(σ, µ) setting) are shown in Figure 3 (a)-(c). Similar to the
matrix case it is quite clear that the `1 norm (a) suffers from
shrinking bias. It consistently gives the best agreement with
the ground truth data for values of µ that are not big enough
to generate low cardinality. In contrast, (19) gives the best
fit at the correct cardinality for all noise levels. This fit was
consistently better than that of (18) for all noise levels. In
Figure 3 (c) we show the fraction of problem instances that
could be verified to be optimal.

In Figure 3 (d) and (e) we tested the case where the el-
ements of an m × n matrix A are sampled from N (0, 1

m )
[1]. Here we let A be random 150× 200 matrices and gen-
erated the ground truth solution and b vector as described
previously. Here (19) consistently outperformed (18) which

exhibits the same tendency to achieve a better fit for non-
sparse solutions.

3. Proof of Corollary 4.2
Here we present the technical details of the continu-

ity argument in the proof of Corollary 4.2. Recall that if
σ(X ′) 6= σ(X), 2Z ∈ ∂G(X), 2Z ′ ∈ ∂G(X ′) and the
singular values of the matrix Z fulfill zi /∈ [(1 − δr −
ε)
√
µ,

√
µ

1−δr−ε ], then for any 2Z ′ ∈ ∂G(X ′) we have

〈Z ′ − Z,X ′ −X〉 > (δr + ε)‖X ′ −X‖2F , (21)

for some ε > 0.
We now assume that ‖X ′ − X‖F 6= 0 and σ(X) =

σ(X ′). We must have σ1(X) > 0 since otherwise X = X ′

= 0 and therefore ‖X ′ −X‖F = 0. By the definition of the
sub differential we therefore know that z1 ≥

√
µ and by the

assumptions of the lemma we have that z1 >
√
µ

1−δr−ε .
If X = UDσ(X)V

T we now define X̄(t) =
UDσ(X̄(t))V

T , where

σi(X̄(t)) =

{
σ1(X) + t if i = 1

σi(X) otherwise
. (22)

Similarly we define Z̄(t) = UDz̄(t)V
T , where

z̄i(t) =

{
z1 + t if i = 1

zi otherwise
. (23)

It is now clear that 2Z̄(t) ∈ ∂G(X̄(t)) and z̄i(t) /∈ [(1 −
δr − ε)

√
µ,

√
µ

1−δr−ε ], for all t ≥ 0. Further more Z̄(t) →
Z̄(0) = Z and X̄(t) → X̄(0) = X when t → 0+. Since
σ(X̄(t)) 6= σ(X ′) for t > 0 we have by (25) that

〈Z ′ − Z̄(t), X ′ − X̄(t)〉 > (δr + ε)‖X ′ − X̄(t)‖2F , (24)

for all t > 0. By continuity of the Frobenius norm and the
scalar product we can now conclude that

〈Z ′ − Z,X ′ −X〉 ≥ (δr + ε)‖X ′ −X‖2F . (25)
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Figure 3: Sparse recovery results for varying noise level (x-axis) and regularization strength (y-axis). Top row: Random
200 × 200 A with δ = 0.2. Bottom row: Random 150 × 200 A (and unknown δ). Plots (a) and (d) show the average
distance between the `1 regularized and the ground truth solutions for values of µ between 0 and 3. (red curves marks the
area where the obtained solution has card(x) = 10.) Plots (b) and (e) show the average distance between (19) and the ground
truth solutions. Plot (c) shows the number of instances where our method could be verified to provide the global optima for
δ = 0.2 (white = all, black = none).
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