Scaling the Scattering Transform: Deep Hybrid Networks

Edouard Oyallon, FEugene Belilovsky, Sergey Zagoruyko

Appendix: Fast GPU Implementation of
the Scattering Transform

Previous implementations of the scattering trans-
form are too slow to scale to large image datasets.
Moreover, learning networks which operate on top of
the scattering transform is impractical with current,
CPU base, implementations. For this reason we de-
velop a GPU based implementation of the scattering
transform that is many orders of magnitude faster than
existing implementations. Our implementation is com-
patible and integrated with two modern deep learning
libraries pytorch (python) and torch (lua).

The bottleneck of the scattering implementations
on CPU was generally both speed and memory con-
sumption. Our implementation on GPU drastically im-
proves both. It is thus necessary to quickly explain our
algorithm: we show that by reorganizing the order of
the computation of the algorithm, one can gain a large
speed improvement.

Computing a scattering transform at order 2 re-
quires computing each path ||z x,, | %y, | where p1, pa
are the parameters with increasing scales of the filters.
Computing each path can be viewed as a computa-
tional tree, where the coefficient of the scattering trans-
form before an averaging are the leaf of the tree, and
the internal nodes are the modulus of the intermedi-
ary wavelet transform. The way the tree is traversed
affects the computation time. In the existing CPU im-
plementation, ScatNet [?], the traversal is done by first
computing each internal node, storing the results of
each internal node. In a second steps, the leafs are
computed and stored. In terms of memory, this is not
optimal since it requires storing the intermediate com-
putations. Instead, we use an affix traversal of the tree.
It reduces at its minimal the memory used, and allow
the straightforward application of GPU primitives.

Our implementation, dubbed PyScatWave (python)
and ScatWave2 (lua), is a GPU version of the scattering
networks in PyTorch and Torch?7, that is based on the
observation above. ScatNetLight is a MATLAB version
on CPUs, which uses as much as possible multithread-
ing. PyScatWave on the other hand uses the library
cuFFT as well as custom CUDA kernels to implement

the core operations.The Table 1 reports the difference
in computation time, for identical parameters and out-
put representations (e.g. same sampling, same hyper
parameters). The input corresponds to batches of 128
tensor, the two first dimensions being the size of the
image, and the third the number of elements in the
tensor (e.g. the color in the case of images) . For our
comparisons we used 24 cores of an Intel Xeon 2.6GhZ
for ScatNetLight and a GTX 1080 GPU for PyScat-
Wave. The speed-up is at least an order of magnitude
in all cases, and up to 225x speed-up in the case of
larger images, similar to the size of those in imagenet.

In practice, on the CIFAR dataset, we find that even
when performing the scattering transform on-the fly
(versus caching its output) we can get a speedup of 30%
in training time with scattering + WRN 12-8 versus
WRN-16-8 in the experiments in Section 4.3.1. This
speedup comes from learned convolutions operating on
a spatial resolution of only 8 x 8. For imagenet our
current implementation with on-the fly generation al-
lows for training of Scattering and ResNet-10 at speeds
analogous to Resnet-152.

We note that further optimizations are possible and
that with appropriate infrastructure, effective caching
mechanisms can allow training speeds to improve sub-
stantially. Using our software which we will release at
time of publication there are several possibilites to fur-
ther improve the low level CUDA routines to better
exploit the parallelization of the scattering transform,
as has been done for many key low-level CNN compo-
nents. Finally, we note that the scattering transform
is amenable to hardware implementation and deploy-
ment.

Table 1. Computation time (in seconds) for different input size, one being with MATLAB on 24 CPUs and the other with
PyTorch on a single GPU. For sizes similar to imagenet, ScatNetLight also utilizes a larger amount of memory (5x or more).

Input Size (H x W x 3 x BatchSize) J | ScatNetLight (in s) PyScatWave (in s) Speed Up
32 x 32 x 3 x 128 2 2.5 0.03 8x

32 x32x3x128 4 13 0.20 65x
128 x 128 x 3 x 128 2 16 0.26 62x
128 x 128 x 3 x 128 4 52 0.54 96x
256 x 256 x 3 x 128 2 160 0.71 225x

