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1. Summary of The Supplementary

This supplementary file includes two parts: (a) Addi-
tional implementation details are presented to improve the
reproducibility; (b) More experimental results are presented
to validate our approach in different aspects, which are not
shown in the main submission due to the space limitation.

2. Additional Implementation Details

Pose-variant face generation We designed a network to
predict 3DMM parameters from a single face image. The
design is mainly based on VGG16 [4]. We use the same num-
ber of convolutional layers as VGG16 but replacing all max
pooling layers with stride-2 convolutional operations. The
fully connected (fc) layers are also different: we first use two
fc layers, each of which has 1024 neurons, to connect with
the convolutional modules; then, a fc layer of 30 neurons is
used for identity parameters, a fc layer of 29 neurons is used
for expression parameters, and a fc layer of 7 neurons is used
for pose parameters. Different from [8] uses 199 parameters
to represent the identity coefficients, we truncate the num-
ber of identity eigenvectors to 30 which preserves 90% of
variations. This truncation leads to fast convergence and less
overfitting. For texture, we only generate non-frontal faces
from frontal ones, which significantly mitigate the halluci-
nating texture issue caused by self occlusion and guarantee
high-fidelity reconstruction. We apply the Z-Buffer algo-
rithm used in [8] to prevent ambiguous pixel intensities due
to same image plane position but different depths.

Rich feature embedding The design of the rich em-
bedding network is mainly based on the architecture of
CASIA-net [6] since it is wildly used in former approach
and achieves strong performance in face recognition. During
training, CASIA+MultiPIE or CASIA+300WLP are used.
As shown in Figure 3 of the main submission, after the con-
volutional layers of CASIA-net, we use a 512-d FC for the
rich feature embedding, which is further branched into a

256-d identity feature and a 128-d non-identity feature. The
128-d non-identity feature is further connected with a 136-d
landmark prediction and a 7-d pose prediction. Notice that
in the face generation network, the number of pose parame-
ters is 7 instead of 3 because we need to uniquely depict the
projection matrix from the 3D model and the 2D face shape
in image domain, which includes scale, pitch, yaw, roll, x
translation, y translation, and z translations.

Disentanglement by feature reconstruction Once the
rich embedding network is trained, we feed genius pair that
share the same identity but different viewpoints into the
network to obtain the corresponding rich embedding, identity
and non-identity features. To disentangle the identity and
pose factors, we concatenate the identity and non-identity
features and roll though two 512-d fully connected layers
to output a reconstructed rich embedding depicted by 512
neurons. Both self and cross reconstruction loss are designed
to eventually push the two identity features close to each
other. At the same time, a cross-entropy loss is applied on the
near-frontal identity feature to maintain the discriminative
power of the learned representation. The disentanglement
of the identity and pose is finally achieved by the proposed
feature reconstruction based metric learning.

3. Additional Experimental Results

In addition to the main submission, we present more
experimental results in this section to further validate our
approach in different aspects.

3.1. P1 and P2 protocol on MultiPIE

In the main submission, due to space considerations, we
only report the mean accuracy over 10 random training and
testing splits, on MultiPIE and 300WLP separately. In Ta-
ble 1, we report the standard deviation of our method as a
more complete comparison. From the results, the standard
deviation of our method is also very small, which suggests
that the performance is consistent across all the trials. We
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Method MultiPIE
15� 30� 45� 60� 75� 90� Avg

SS 0.908(0.0088) 0.899(0.0088) 0.864(0.0072) 0.778(0.0084) 0.487(0.0119) 0.207(0.0156) 0.690(0.2600)
SS-FT 0.941(0.0067) 0.936(0.0090) 0.919(0.0105) 0.883(0.0113) 0.799(0.0108) 0.681(0.0130) 0.860(0.0940)
MSMT 0.965(0.0053) 0.955(0.0054) 0.945(0.0062) 0.914(0.0059) 0.827(0.0110) 0.689(0.0143) 0.882(0.0982)

MSMT+L2 0.972(0.0058) 0.965(0.0056) 0.954(0.0075) 0.923(0.0048) 0.849(0.0067) 0.739(0.0095) 0.900(0.0834)
MSMT+SR (ours) 0.972(0.0060) 0.966(0.0069) 0.955(0.0068) 0.927(0.0068) 0.857(0.0066) 0.749(0.0105) 0.905(0.0797)

Table 1. Rank-1 recognition accuracy comparisons on MultiPIE [1] under P1 testing protocol.

Method MultiPIE
15� 30� 45� 60� 75� 90� Avg

300WLP MSMT (P1) 0.941(0.0051) 0.927(0.0059) 0.898(0.0073) 0.837(0.0106) 0.695(0.0135) 0.432(0.0110) 0.788(0.1794)
Ours (P1) 0.945(0.0067) 0.933(0.0068) 0.910(0.0073) 0.862(0.0082) 0.736(0.0096) 0.459(0.01359) 0.808(0.1709)

300WLP MSMT (P2) 1.00 1.00 0.992 0.943 0.797 0.488 0.870
Ours (P2) 1.00 1.00 0.993 0.964 0.838 0.511 0.884

Table 2. Cross database evaluation under either P1 or P2 protocols. Training: CASIA [6] and 300WLP [8]. Testing: MultiPIE [1].

Method MultiPIE
15� 30� 45� 60� 75� 90� Avg

SS 1.00 0.998 0.985 0.892 0.563 0.250 0.781
SS-FT 0.999 0.993 0.981 0.951 0.874 0.753 0.925
MSMT 1.00 1.00 0.993 0.982 0.908 0.753 0.939

MSMT+L2 1.00 999 0.990 0.978 0.911 0.800 0.946
MSMT+SR (ours) 1.00 0.999 0.995 0.982 0.931 0.817 0.954

Table 3. Recognition accuracy of different baseline models.

also compare the cross database evaluation on both mean
accuracy and standard deviation in Table 2. We show the
models trained on 300WLP and tested on MultiPIE with
both P1 and P2 protocol. Please note that with P2 protocol,
our method still achieves better performance on MultiPIE
than MvDN [3] with 0.7% gap. Further, across different
testing protocols, the proposed method consistently outper-
forms the baseline method MSMT, which clearly shows the
effectiveness of our proposed Siamese reconstruction based
regularization for pose-invariant feature representation.

3.2. Control Experiments with P2 on MultiPIE

The P2 testing protocol utilizes all the 0� images as the
gallery. The performance is expected to be better than that
reported on P1 protocol in the main submission since more
images are used for reference. There is no standard devia-
tion in this experiment as the gallery is fixed by using all the
frontal images. The results are shown in Table 3, which con-
firms the conclusion that the proposed feature reconstruction
based regularization is effective in obtaining pose-invariant
and highly discriminative feature representations for face
recognition.

3.3. Recognition Accuracy on LFW

We also carried out additional experiments on LFW [2].
As we know, LFW contains mostly near-frontal faces. To
better reveal the contribution of our method designed to
regularize pose variations, we compare the performance with
respect to statistics of pose range (correct pairs num. / total
pairs num. in the range). Table 4 shows the results. Our
approach outperforms VGG-Face especially in non-frontal
settings (¿30), which demonstrates the effectiveness of the
proposed method in handling pose variations.

3.4. Feature Embedding of MultiPIE

Figure 1 shows t-SNE visualization [5] of VGGFace [4]
feature space and the proposed reconstruction-based dis-
entangling feature space of MultiPIE [1]. For visualization
clarity, we only visualize 10 randomly selected subjects from
the test set with 0�, 30�, 60�, and 90� yaw angles. Figure 1
(a) shows that samples from VGGFace feature embedding
have large overlap among different subjects. In contrast,
Figure 1 (b) shows that our approach can tightly cluster
samples of the same subject together which leads to little
overlap of different subjects, since identity features have
been disentangled from pose in this case.

3.5. Feature Embedding of 300WLP

Figure 2 shows t-SNE visualization [5] of VGGFace [4]
feature space and the proposed reconstruction-based disen-
tangling feature space, with 10 subjects from 300WLP [7].
Similar to the results of MultiPIE [1], the VGGFace fea-
ture embedding space shows entanglement between identity
and the pose, i.e., the man with the phone in 45� view is
overlapped with the frontal view image of other persons. In
contrast, feature embeddings of our method are largely sepa-
rated from one subject to another, while feature embeddings



of the same subject are clustered together even there are
extensive pose variations.

3.6. Probe and Gallery Examples

In Figure 3, we show examples of gallery and probe
images that are used in testing. Figure 3 (a) shows the
gallery images in 0� from MultiPIE. Each subject only has
one frontal image for reference. Figure 3 (b) shows probe
images of various pose and expression from MultiPIE. Each
subject presents all possible poses and expressions such as
neutral, happy, surprise, etc. The illumination is controlled
with plain front lighting. Figure 3 (c) shows the gallery
images from 300WLP, with two near-frontal images of each
subject randomly selected. Figure 3 (d) shows all poses of
the same subject from 300WLP.

3.7. Failure cases in MultiPIE and 300WLP

In Figure 4, we show the typical failure cases generated
by the proposed method on both MultiPIE and 300WLP. For
MultiPIE, the most challenging cases come from exagger-
ated expression variations, e.g. Figure 4 (a), the second row.
For 300WLP, the challenge mostly come from head pose
variations and illumination variations. However, images in
most failure pairs are visually similar.
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Method LFW
0� 30� 30� 45� 45� 60� 60� 90� > 30�inavgerage

VGG-Face 0.973 (5304/5524) 0.967 (410/424) 0.961 (49/51) 1.00 (1/1) 0.964
Ours 0.986 (5445/5524) 0.981 (416/424) 1.00 (51/51) 1.00 (1/1) 0.983

Table 4. Pose-wise recognition accuracy on LFW (correct pairs num. / total pairs num. in the range).

(a) VGGFace Feature Space (b) Reconstruction-based Disentangling Feature Space

Figure 1. t-SNE visualization of VGGFace [4] feature space (left) and the proposed reconstruction-based disentangling feature space (right),
with 10 subjects from MultiPIE [1]. The same marker color indicates the same subject. Different marker shapes indicate different head
poses. Our approach shows better results in disentangling pose factors from identity representations.

(a) VGGFace Feature Space (b) Reconstruction-based Disentangling Feature Space

Figure 2. t-SNE visualization of VGGFace [4] feature space (left) and the proposed reconstruction-based disentangling feature space (right),
with 10 subjects from 300WLP [7]. The same marker color indicates the same subject. Different marker shapes indicate different head poses.
Our approach shows better results in disentangling pose factors from identity representations.



(a) Gallery Samples (b) Probe Samples

(c) Gallery Samples (d) Probe Samples

Figure 3. The gallery and probe samples adopted in the testing from MultiPIE [1] and 300WLP [8]. (a) The gallery samples of MultiPIE. (b)
The probe samples of MultiPIE. (c) The gallery samples of 300WLP. (d) The probe samples of 300WLP.



(a) MultiPIE failure cases

(b) 300WLP failure 

Figure 4. Some failure cases in MultiPIE [1] and 300WLP [8]. Each case consists of a pair of images. The gallery image is on the left
and the probe image is on the right. In both (a) and (b), the first row shows cases of 15� and 30�, the second row shows cases of 45� and
60�, and the third row shows cases of 75� and 90�. (b) follows the same layout as (a). In MultiPIE, most failures result from extensive
expressions. In 300WLP, most failures results from the large pose and illumination changes. Images in most failure pairs are visually similar.


