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1. Summary of the material
In the zip file, the reader will find

• High resolution image describing the embedding of
SenseCam AIHS data in a 64× 64 counting grid (Fig.
2 in main text). In each location, an image with the
highest likelihood is shown. (CGembedding.jpg)

• A video of the random walk over the counting grid
(TheAmericanDream.avi)

• The high resolution image of the tSNE embedding
of the same SenseCam data using the same features
(tSNE.pdf)

• The accompanying text including comparison with
tSNE, as well as the list of all classes in the SenseCam
dataset (this text)

• Classification in case of abundance of training data.

2. CG embedding illustrated
Although Counting Grids (CGs) can be trained in higher

dimensions than two, and have been shown to benefit from
extra dimensionality in several applications, we focused on
2D embeddings as we expect that visualization and brows-
ing will play an important role in adoption of wearables. In
Fig. 2 of the main text we illustrated the 2D CG mapping of
43516 images from the SenseCam data. The high resolution
of this image is available in CGembedding.jpg. While this
64 × 64 tiling only shows less than 10% of all data, it does
allow for quick discovery of typical scenes. For example, a
large contiguous area close to the left edge contains images
taken in the office. Interestingly the variation in the vertical
direction corresponds largely to the angle of view change
(as we move up in the grid, the camera angle points more
and more towards the ceiling). Just below this area is an

area filled with a few images of the subject’s kitchen, with
most images taken in the morning with kids around. The
living room images are mostly found at the top and bottom
(CGs are mapped on a torus, and so the top and the bot-
tom correspond to the same area in the mod 64 sense on
a 64-cell-tall grid). Thus this embedding can be a starting
point for powerful visualization-driven tools. Suppose that
the user wants to set a reminder that should go off at dinner
time (e.g., to take a pill with food, or to discuss an inter-
esting story he or she heard on NPR on the way to work).
Then, instead of searching for an image taken in the dining
room by flipping through images in temporal order, such an
image can be quickly spotted in the upper left area of the
grid where a cluster of dining room images occupy a con-
tiguous area. Furthermore, instead of using just a couple
of images from there and attaching a reminder to them, the
user could lasso the entire area, specify the length of time
that needs to be spent in this area before the reminder goes
off and thus create a very reliable just-in-time notification
trigger. To further illustrate the clustering of the images, we
use the fact that the images are taken in temporal order (al-
beit very sparsely, every 20 seconds or so), and compute a
transition statistic

r`(∆) =

∑
t q(`t = `)q(`t+1 = ` + ∆)∑

t q(`t = `)
, (1)

for ∆ ∈ {−1, 0, 1} × {−1, 0, 1}. In Fig. 1-Left), we
show the negative entropy of this distribution, −H(`) =∑

∆ r`(∆) log r`(∆) next to the tiled visualization of the
embedding Fig. 1-Right. The entropy image reveals ‘walls’
among areas of high visual similarity whenever there is a
small likelihood of jumping from one ‘room’ to the neigh-
boring one, as we move from one time point in the acqui-
sition to the next. For example, the office area is broken
into two sections, one taken at work, and the other in the
home offices of the subject. (Examining closely the ver-
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Figure 1. Left: The negative entropy −H(`) of the transition statistic at each location ` reveals the transition ‘walls’ among visually
consistent areas. The dark spots indicate natural clusters. Right: The most likely image in each location `.

tical boundary, we see that the images on either side are
structurally very similar, with the same pattern of vertical
variation reflecting angle of view change on both sides of
the ‘wall,’ i.e. both at work and at home. The boundary,
however, indicates that these two are different clusters as
the subject’s images are typically mapped on one side of
the boundary or the other).

We also created a video sequence TheAmerican-
Dream.avi, where a random walk according to r`(∆) is run
for 1650 frames. The video starts at a location ` in the sub-
ject’s living room, after which r`(∆) is sampled and the
location moved to ` + ∆. The process is repeated with oc-
casional random jumps to avoid spending too much time in
one area. The left panel shows the locations of the last few
frames in the ‘wall map’ −H(`)described above. The cen-
tral frame shows an image that maps to the current location.
As each location represents multiple (in some cases hun-
dreds of) images, the image to show is sampled based on
the quality of fit p(xt|`). The right panel is a 7 × 24 rect-
angle in which the current frame’s capture time is shown as
(day, hour), with days starting with Sunday and ending with
Saturday. The one-minute video should be viewed several
times at various playback speeds and also with pausing to
reveal that this sampling procedure pulls highly similar im-
ages taken on very different days. It also quickly reveals
natural patterns, such as the scattering of images of office
across different days in earlier hours of the day; the grill
coming into visual field with a variety of food across differ-
ent days in the evening just before the dining room images
are typically taken; the biking scenes and garden images
mostly captured on weekends (Sunday on the top and Sat-
urday on the bottom).

Thus, the embedding can indeed lead to a variety of
interesting applications, e.g., correlating the time spent in
any of the ‘visual rooms’ with health indicators (e.g. sleep

quality pulled from the FitBit); adding creative notifica-
tions (like ‘remind me to check if I turned off the grill 5
minutes after it was last spotted’) which the hardware on
camera or the phone can flash after appropriate visual de-
tection in real time; visual search (‘where did I leave that
sweater?’); tracking the growth of children; placing high
res photos taken with phone camera in the context of the
more frequent lower quality acquisition by something like
a SenseCam, etc. In addition, GPS, accelerometers, and the
context of smart phone use can all be combined with the vi-
sual stream, and streams can be shared. For example, when
the subject’s GPS location indicates that he is in the grocery
store, he could be reminded to get yogurt not by a phone call
from a family member, but by an addition (in real time) of a
reminder into the ‘dairy section of the store’ visual room, as
the subject always buys milk but tends to forget the yogurt.
The notification can be added by a family member complete
with the photo of the exact brand that is needed.

Te visualizations here are just a starting point, of course.
Instead of an image tiling, a larger image could be chosen
to represent an entire room (or surfaced on top of the tiling).
Mouse-over or touch can be used to pop-up the mapped im-
ages, and the timeline graph can be used to indicate all the
times when these images were collected so that the user can
go back and forth between temporal and embedding brows-
ing, etc.

The point is that a 2D embedding is relatively easy to
browse, and that the quality of the embedding is good
enough to surface the natural clusters even early in the sub-
ject’s use of the wearable camera, making the low-labeling-
effort scenarios possible. Importantly, the ability to start
such applications without a lot of labeled data would ensure
faster adoption, as discussed in the main paper.



Table 1. kNN classification with small number of labeled exemplars. In multiframe cases, the majority vote over three frames are used to
classify the middle frame.

Exemplars
Method 1 2 3 4 5 10
CG-HMM 0.3157 0.3894 0.4495 0.4828 0.5169 0.5561
fc6 0.09081 0.2092 0.2911 0.3473 0.4107 0.4784
tSNE 0.1708 0.3203 0.4016 0.4650 0.5102 0.5517
CG-HMM-Multiframe 0.3412 0.4236 0.4855 0.5118 0.5283 0.6013
fc6-Multiframe 0.1134 0.2277 0.3218 0.3615 0.3902 0.5007
tSNE-Multiframe 0.1718 0.3167 0.4255 0.4838 0.5238 0.5790

.

3. Comparison with tSNE embedding

In analyzing wearable camera images, we focused on
CG-based models as previous work on the SenseCam
dataset had most success with embeddings based on this
model (alternatives include panoramic epitome models with
structure elements instead of colors). Approaches using
pairwise distances (LLE, ISOMAP), and various linear em-
beddings such as PCA usually did not match CG models in
performance. However, given that this work uses new, more
powerful features, the question is if popular embedding
methods may also work well with these features. Here we
compare our embedding with tSNE [6], currently perhaps
the most popular embedding tool. This tool shares some
appealing properties with CGs. The data is less likely to
end up clumped in distant clusters, allowing for potentially
better visualizations than LLE and ISOMAP. Although the
method is based on pairwise distances, the tool is practi-
cal for large datasets as accelerated algorithms that estimate
the embedding in O(T log T ) time for T samples have been
developed (CGs are of still lower, O(T ) complexity).

The embedding of 43516 images from the SenseCam
data is illustrated in Fig. 2 Left) where each image is repre-
sented as a circle to illustrate the mapping spread and den-
sity, and Fig. 2 Right) where a uniform tessellation of the
space is created and cells each filled with one of the im-
ages that fell in the cell (high res version is attached in
tSNE.pdf). This allows a visual comparison with CGem-
bedding.jpg (note that in tSNE embedding there is no no-
tion of wraparound as is the case in CGs which are mapped
on a torus). While the embedding is quite reasonable, iden-
tifying some main classes such as the work office, the home
office, car, and dining room, there are also undesirable ef-
fects such as splitting the living room based on the lighting
condition, and scattering kitchen images, as well as the less
uniform use of the space (Fig. 2 left) compared to CGs
which update all positions during learning and use the en-
tire space to increase the likelihood of the data. Numeri-
cally, these differences contribute to lower kNN classifica-
tions in low-labeling regime with 1-10 labeled exemplars
per class, as shown in Table 1. The numbers are especially
low compared to CGs when only 1-3 exemplars per class

are provided as a training set.

3.1. Google Glass life logging experiment

The objective of this experiment is to analyze the perfor-
mance of our approach in abundance of annotated data. The
recent Google Glass dataset consists of 660, 000 seconds of
egocentric video streams collected by three subjects named
A, B, and C. Differently from the main paper, in the addi-
tional material we used the same experimental set-up sug-
gested in [4]. We compared our method with all the base-
line algorithms and DMA [5], which is state-of-the-art in
this dataset. In particular, it used two network architectures
a CNN and a shallow network, that tries to manage domain
shift between source and new target data in an online man-
ner.
Table 2 summarizes the results. Once again we observed
that CG models consistently outperform the competitors
by a large margin. The technique, introduced here (e.g.,
CGCW ) help to improve significantly the quality of the la-
tent space, and thus the accuracy.
One can also observe that for a large amount of training
samples, high dimensional autoencoders outperform other
methods, which yet gives satisfactory results. However,
higher dimensional embeddings can not serve as a reliable
visualization tool for visual lifelog which is key in large data
visualization.

4. The list of labeled classes
The SenseCam contains 43516 images, of which 5860

were labeled manually. The 45 labels are:
1 - Bathroom Home
2 - Bedroom Home
3 - Biking
4 - Cafeteria Work
5 - Car
6 - School A Inside
7 - Conference Room
8 - Corridors Work
9 - Dining Room Home
10 - Bakery
11 - Garage Home



Table 2. Comparison of average accuracy on Google Glass with
baselines. The final accuracy is computed as the average of three
available annotated levels, namely ”location”, ”sub-location” and
”Activity”, for each subject A, B, and C. 10-folds with 20 times of
repetition using kNN classifier is used for this task.

Subject
Method A B C
CG [2] 0.8256 0.7864 0.7951
CGCW 0.8337 0.8012 0.8103
tSNE [6] 0.7859 0.7052 0.7993
fc6 [3] 0.6117 0.5579 0.732
DMA [5] 0.6702 0.588 0.7757
2D-Autoencoder [1] 0.6096 0.695 0.6193
50D-Autoencoder [1] 0.9308 0.893 0.9254
100D-Autoencoder [1] 0.9384 0.8963 0.9269
200D-Autoencoder [1] 0.9390 0.9037 0.9277

12 - Atrium
13 - Entry
14 - Hiking
15 - Ice palace
16 - Kids Bedroom Home
17 - Kids Game Room Home
18 - Kitchen Home
19 - Living Room Home
20 - Lounge
21 - Office Home
22 - Campus
23 - Parking Work
24 - Patio Home
25 - Playground
26 - Restroom Work
27 - Small Bathroom Home
28 - Small Home Office
29 - Tennis Court
30 - Food Court
31 - Grocery Store 1
32 - Work office
33 - Coffee House 2
34 - Garden
35 - School M Inside
36 - Front Home
37 - School A Outside
38 - FuseBall Room
39 - Dance
40 - Coffee House
41 - Post Room
42 - Hallway 1st Floor
43 - Fred Meyer grocery store
44 - Print Room
45 - School M Outside
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Figure 2. Left: The embedding of 43516 images from the SenseCam data, each image is represented as a circle to illustrate the mapping
spread and density. Right: a uniform tessellation of the space is created and cells each filled with one of the images that fell in the cell.


