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1. Gauge freedom for Joint estimation

In image plane, we estimate the motion parameters A and the orthogonal VDs ϑ simultaneously by
minimizing the geometric error. i.e.,

arg min
ϑ,A

N∑

i=1

min
E
ρ
(
D([ūi]×KR(ϑ)̂ej , ui)

)
(1)

where ūi = 0.5ui + 0.5vi is the mid-point and ui = KR(ruA)ᵀursi & vi = KR(rvA)ᵀvrsi are the end points
of li in GS coordinates. The distance of a point u from a line l = [l1, l2, l3]

ᵀ is computed as

D(l,u) = lᵀu/
√
l21 + l22. (2)

As discussed in the main paper, the unknown parameters ϑ and A are highly dependent on each other
in (1). Thus, the natural representation over-parameterize the problem. In general, the gemetric error (1)
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(and also the other types of error discussed in the main paper) are rather bilinear functions. In following, we
investigate the gauge freedom for bilinear functions and then derive the case of joint estimation of the VDS
and the motion estimation.

1.1. Bilinear functions

First, consider a bilinear fuction f(x, y) = xᵀy. We have

∂f =

(
yᵀ

xᵀ

)
Hf =

(
0 I
I 0

)
,

and therefore the second-order Taylor expansion is

f(x+ dx, y + dy) ≈ f(x, y) +
1

2

(
dx
dy

)ᵀ(
0 I
I 0

)(
dx
dy

)
+

(
yᵀ

xᵀ

)(
dx
dy

)

= f(x, y) + dxᵀdy + yᵀdx+ xᵀdy.

Note that Hf has full rank, but its eigenvalues are (1, . . . , 1,−1, . . . ,−1). On the other hand we know
that f(x, y) = xᵀy = xᵀHH−1y = (Hᵀx)ᵀH−1y. If we choose dx = Hᵀx − x = (Hᵀ − I)x and
dy = H−1y − y = (H−1 − I)y, then we read

dxᵀdy + yᵀdx+ xᵀdy = xᵀ(Hᵀ − I)ᵀ(H
−1 − I)y + yᵀ(Hᵀ − I)x+ xᵀ(H

−1 − I)y

= xᵀ(I −H −H−1 + I)y + xᵀ(H − I)y + xᵀ(H
−1 − I)y

= xᵀ(2I −H −H−1 +H − I +H
−1 − I)y = 0.

Further, if dx = (Hᵀ − I)x is given, then we obtain constraints on dy,

0 = dxᵀdy + yᵀdx+ xᵀdy = xᵀ(H − I)dy + xᵀ(H − I)y + xᵀdy

= xᵀ(Hdy − dy +Hy − y + dy) = xᵀ(Hdy +Hy − y).

A sufficient condition for the above to hold is that Hdy+Hy− y = 0 or dy = H−1(y−Hy) = H−1y− y,
which means that y + dx = H−1y as before.

Now let f(x, y) = g(x)ᵀh(y) be a “pseudo”-bilinear function, and n = dim(x) = dim(y). We obtain

∂xf = h(y)ᵀ∂xg = hᵀg′ =
∑

i

hig
′
i

∂yf = g(x)ᵀ∂yh = gᵀh′ =
∑

i

gih
′
i

∂x2f =
∑

i

hig
′′
i ∂y2f =

∑

i

gih
′′
i ∂x,yf =

∑

i

(g′i)
ᵀh′i.

If we want f(x + dx, y + dy) = f(x, y), then using the second order Taylor expansion we obtain the
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constraint

0 =
1

2

∑

i

(
dx
dy

)ᵀ(
hig
′′
i (g′i)

ᵀh′i
(h′i)

ᵀg′i gih
′′
i

)(
dx
dy

)
+

(
hᵀg′

gᵀh′

)(
dx
dy

)

=
1

2

∑

i

(
hidx

ᵀg′′i dx+ 2dxᵀ(g′i)
ᵀh′idy + gidy

ᵀh′′i dy
)

+ hᵀg′dx+ gᵀh′dy

=
1

2

∑

i

hidx
ᵀg′′i dx+ dxᵀ

∑

i

(
(g′i)

ᵀh′idy + g′ihi
)

+
1

2

∑

i

gidy
ᵀh′′i dy + gᵀh′dy

=
1

2

∑

i

hidx
ᵀg′′i dx+

1

2

∑

i

gidy
ᵀh′′i dy + dxᵀ(g′)ᵀh′dy + hᵀg′dx+ gᵀh′dy

Now if dx = Hᵀx− x = (Hᵀ − I)x, we obtain

0 =
1

2

∑

i

hix
ᵀ(H − I)g′′i (Hᵀ − I)x+ xᵀ(H − I)

∑

i

(
(g′i)

ᵀh′idy + g′ihi
)

+
1

2

∑

i

gidy
ᵀh′′i dy + gᵀh′dy

This doesn’t seem to go anywhere.
Let us linearize g(x+ dx) ≈ g(x) + g′dx and h(y + dy) ≈ h(y) + h′dy, then

f(x+ dx, y + dx) ≈ (g + g′dx)ᵀ(h+ h′dy) = f(x, y) + dxᵀ(g′)ᵀh+ gᵀh′dy + dxᵀ(g′)ᵀh′dy,

i.e. the constraint is

dxᵀ(g′)ᵀh+ gᵀh′dy + dxᵀ(g′)ᵀh′dy = 0.

Now let dx = (Hᵀ − I)x, then we obtain

0 = xᵀ(H − I)(g′)ᵀh+ gᵀh′dy + xᵀ(H − I)(g′)ᵀh′dy

= xᵀ(H − I)(g′)ᵀh+
(
gᵀh′ + xᵀ(H − I)(g′)ᵀh′

)
dy.

Note that this is only a scalar constraint on dy. Now for every x there exists a matrix Ax (dependent on the
current value of x) such that g(x) = Aᵀ

xx. This yields

0 = xᵀ(H − I)(g′)ᵀh+ xᵀ
(
Axh

′ + (H − I)(g′)ᵀh′
)
dy

and sufficient conditions are given by

0 = (H − I)(g′)ᵀh+
(
Axh

′ + (H − I)(g′)ᵀh′
)
dy.

Hence, a particular solution for dy is given by

dy =
(
Axh

′ + (H − I)(g′)ᵀh′
)−1

(I −H)(g′)ᵀh.

If g = Id, h = Id, then Ax = I , g′ = I , h′ = I and

dy =
(
I + (H − I)I

)−1
(I −H)Iy = H

−1
(y −Hy) = H

−1
y − y

as earlier. Now let H = I + εB, then

dy = ε
(
Axh

′ + εB(g′)ᵀh′
)−1
B(g′)ᵀh,
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and dy scales with the magnitide ε of the update.
What if g = Id, h = Id and dx = (Hᵀ − I)x, but Ax is chosen arbitrarily such that g(x) = Aᵀ

xx? Then

dy =
(
Ax +H − I

)−1
(I −H)y

and

(H − I)(g′)ᵀh+
(
Axh

′ + (H − I)(g′)ᵀh′
)
dy = (H − I)y +

(
Ax +H − I

)(
Ax +H − I

)−1
(I −H)y

= (H − I)y + (I −H)y = 0.

This means that there are additional degrees of freedom in f(x, y) = g(x)ᵀh(y) beyond chossing H ∈
Rm×m (at an infinitesimal scale). Now

(x+ dx)ᵀ(y + dy) = xᵀH
(
I +

(
Ax +H − I

)−1
(I −H)

)
y 6= xᵀy

in general (unless Ax = I).

1.2. Counting d.o.f.

Let Q ∈ Rn×n, then there exists an A ∈ Rm×m such that g(Px) = Aᵀg(x). A has m2 − n d.o.f.
Similarly, let B ∈ Rm×m such that h(Qy) = Bh(y) for some n × n matrix Q. B has m2 − n d.o.f. One
has

g(Px)ᵀh(Qy) = g(x)ᵀAB h(y).

There is now the extra (scalar) constraint on A and B that g(x)ᵀAB h(y) = g(x)ᵀh(y). A sufficient
condition is AB = I , but this may be unnecessarily strong, in particular since A and B may depend on x
and y.

1.3. Minimum norm dy

The main constraint after linearizing g(x+ dx) and h(y + dy) is given by

dxᵀ(g′)ᵀh+ gᵀh′dy + dxᵀ(g′)ᵀh′dy = hᵀg′dx+ (g + g′dx)ᵀh′dy = 0.

Using the fact that arg minξ‖ξ‖2/2 + ı{cᵀξ = d} = dc/‖c‖2, we obtain for a minimal-norm dy

dy =
−hᵀg′dx∥∥(g + g′dx)ᵀh′

∥∥2 (h′)ᵀ(g + g′dx).

Note that g + g′dx (the linearization of g(x + dx)) may not be in the null space of h′. If we only linearize
h(y + dy) ≈ h+ h′dy, the constraint reads as

g(x+ dx)ᵀ(h+ h′dy)− gᵀh = 0,

leading to

dy =
(g − g(x+ dx))ᵀh∥∥g(x+ dx)ᵀh′

∥∥2 (h′)ᵀg(x+ dx).
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For g = Id, h = Id, h′ = I , x+ dx = Hᵀx we obtain

y + dy = y +
(x−Hᵀx)ᵀy∥∥Hᵀx

∥∥2 Hᵀx =
xᵀHHᵀxy + yᵀxHᵀx− yᵀHᵀxHᵀx∥∥Hᵀx

∥∥2

=
xᵀHHᵀxy +Hᵀxxᵀy −HᵀxxᵀHy∥∥Hᵀx

∥∥2

=
xᵀHHᵀxI +Hᵀxxᵀ −HᵀxxᵀH∥∥Hᵀx

∥∥2 y.

For H = I + εB we obtain

y + dy =
xᵀ(I + εB)(I + εB)ᵀxI + (I + εB)ᵀxxᵀ − (I + εB)ᵀxxᵀ(I + εB)∥∥(I + εB)ᵀx

∥∥2 y

=
xᵀ(I + εB + εBᵀ + ε2BBᵀ)xI + (I + εB)ᵀxxᵀ − xxᵀ − εBᵀxxᵀ − εxxᵀB − ε2BᵀxxᵀB∥∥(I + εB)ᵀx

∥∥2 y

=
xᵀ(I + εB + εBᵀ + ε2BBᵀ)xI − εxxᵀB − ε2BᵀxxᵀB∥∥(I + εB)ᵀx

∥∥2 y

For ε small we have therefore

y + dy ≈ xᵀxI + εxᵀBxI + εxᵀBᵀxI − εxxᵀB∥∥(I + εB)ᵀx
∥∥2 y.

Hmmm. Numerical examples indicate that for small ε one has y + dy ≈ H−1y.
In the infinitesimal setting we have the following result: changing x by an infinitesimal dx leads to an

update for y according to

dy =
(g − g(x+ dx))ᵀh∥∥g(x+ dx)ᵀh′

∥∥2 (h′)ᵀg(x+ dx) =
−hᵀg′dx∥∥(g + g′dx)ᵀh′

∥∥2 (h′)ᵀ(g + g′dx),

which is a PDE coupling dx and dy. dy is well-defined as long as g(x + dx) is not in the null space of h′

(which means that the local linear model of h(y) must be able to “interact” with the value g(x + dx)). A
sufficient conditions is that h′ has full rank.

Now let x(t), t ∈ [0, 1] evolve to reach Hx from a given starting point x, e.g. x(t) = (1 − t)x + tHx
and dx(t) = ẋ(t)dt = (Hx− x)dt. We have (using ∆x = εẋ(t))

∆y(t) = y(t+ ε)− y(t) =
−εhᵀg′ẋ(t)∥∥(g + εg′ẋ(t))ᵀh′

∥∥2 (h′)ᵀ(g + εg′ẋ(t)) =: Ft(ε)

and therefore

ẏ(t) = lim
ε→0

y(t+ ε)− y(t)

ε
= lim

ε→0

Ft(ε)

ε
= F ′t .

Finally the values for y(1) can be found by integration,

y(1) =

∫ 1

t=0
ẏ(t)dt.
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1.4. How does this apply to Manhattan-world rolling shutter compensation?

For the error in the image plane, the cost function can be abstractly written as g(ωv)
ᵀh(ωRS), where ωv

and ωRS is a minimal 3-dimensional parametrization of rotation matrices. Each term gi(ωv)
ᵀhi(ωRS) is the

squared point-line distance between the vanishing point v and the motion compensated line endpoints s, t:

vi = π(R(ωv)eji) si = π(R(ωRS)ŝi) ti = π(R(ωRS)t̂i)

d2(vi, si × ti) =
(vᵀi (si × ti))2
‖(si × ti)1,2‖2

=

(
vᵀi

si × ti
‖(si × ti)1,2‖

)2

.

Since the line normal is normalized, we also can drop the projection π and replace si× ti by (R(ωRS)ŝi)×
(R(ωRS)t̂i).

We further need the observation that for two vectors u and v it holds

(uᵀv)2 = (
∑

i

uivi)
2 =

∑

i,j

uiujvivj = vec(u⊗ u)ᵀ vec(v ⊗ v),

i.e. a squared inner product can be written as dot product in a non-linearly transformed higher-dimensional
space.

In this setting

g(ωv) = vec(a⊗ a) ai = π(R(ωv)ej(i))

h(ωRS) = vec(b⊗ b) bi =
(R(ωRS)ŝi)× (R(ωRS)t̂i)∥∥(R(ωRS)ŝi)× (R(ωRS t̂i))

∥∥
1,2

and h′, g′ ∈ R4N×3, where N is the number of line segments. Since 4N � 3, h′ will be most likely of full
rank.

2. Optimization of the non-linear objective

We employ the Levenberg-Marquardt algorithm to optimize (1). To avoid sub-gradients, we replace non-
smooth min operator by a smooth softmin operator

softminj∈E(zj ; σ) = −σ log
(∑

j∈E
exp(−zj/σ)

)
. (3)

where σ is chosen as 0.0025. The gradient of softmin maps {zj}j∈E in the range (0, 1) that add up to 1.

2.1. Computation of the Jacobian

The Jacobian JA, ϑ ofD([vi]×KR(ϑ)̂e, ui) is evaluated at (Ak, ϑk) and is carried out by applying the
chain rule as follows:

JA, ϑ =

[
∂D([vi]×KR(ϑ)̂e, ui)

∂A
∂D([vi]×KR(ϑ)̂e, ui)

∂ϑ

]
, (4)

∂D
∂A ≈ uᵀ

i (R(ϑ)̂e)ᵀ
∂[vi]×
∂A + ([vi]×KR(ϑ)̂e)ᵀ

∂ui
∂A ,

∂D
∂ϑ
≈ uᵀ

i [vi]×K
∂R(ϑ)̂e
∂ϑ

.

(5)
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Substituting, ui = KR(ruA)ᵀursi & vi = KR(rvA)ᵀvrsi

∂ui
∂A = K

∂R(ruA)ᵀursi
∂A ,

∂[vi]×
∂A =

[
K
∂R(rvA)ᵀvrsi

∂A

]

×
. (6)

Under the choice of ρ ,

ρ′(x) =

{
x |x| < δ

δ ∗ sgn(x) otherwise.
(7)

∂R(ruA)ᵀursi
∂rA

≈ ∂

∂rA


 ·


ursi −R(ruA)ᵀursi



rx
ry
rz


 (8)

∂
∂rA


 ·


ursi = 2×




[rx, ry, rz] ·ursi [−ry, rx, −1] ·ursi [−rz, 1, rx] ·ursi
[ry, −rx, 1] ·ursi [rx, ry, rz] ·ursi [−1, −rz, ry] ·ursi
[rz, −1, −rx] ·ursi [1, rz, −ry] ·ursi [rx, ry, rz] ·ursi




∂rA
∂A =




pn 0 0
0 pn 0
0 0 pn


 (9)

where pn = [1, p, . . . , pn]ᵀ and 0 = [0, 0, . . . , 0] (n+1 times). ∂R(ϑ)uj

∂ϑ is computed similarly as (8).

3. Experiments on Additional Datasets

We execute on some other real datasets in addition to the main paper. The results on some of the images
are shown in the Figure 1 and 2. Here we consider only 50 point correspondences in Figure 1 and 100
point correspondences in Figure 2 for quantitative evaluations. We experienced similar performance to the
multiple frame methods [9, 12] and better than the single frame method [26]. Note that the results of [9, 12]
are downloaded from their respective webpages. The authors of [26] shared their results with us.
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(a) |RF | = 36.75, σR = 3.51 [9] (b) |RF | = 29.92, σR = 2.10 [26] (c) |RF | = 31.45, σR = 1.82 ours

Figure 1: Comparison of the proposed method with [9] and [26] on the image sequences clipo4.mp4
from [9].

(a) |RF | = 94.45, σR = 3.46 [12] (b) |RF | = 89.52, σR = 2.95 [26] (c) |RF | = 94.58, σR = 3.17 ours

Figure 2: Comparison of the proposed method with [12] and [26] on the image sequence
nxs_wobble_2_result_dual.mov from [12].
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4. Images from the main paper

(a) (b)

(c)

Figure 3: (a) A real rolling shutter distorted image. (b) Rectified by Rengarajan et al. [26]. (c) Proposed
simultaneous estimation of orthogonal vanishing directions and rolling shutter motion. The colors red, green
and blue are employed for the orthogonal vanishing directions, while yellow is used to mark the outliers
(lines which are not associated with any of the vanishing directions).
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Figure 4: (a) A global shutter opens to allow light to strike the entire sensor surface all at once. (b) In con-
trast, a rolling shutter exposes the image line-by-line. Depending on the selected exposure time, distortions
can occur when the camera moves during the exposure process—the so-called rolling shutter effects.
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Figure 5: The 3D parallel lines in the world space are projected into the concurrent LSs (green) on a GS
camera and arc segments (red) for RS camera.
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Figure 6: Different choices of errors utilized for joint estimation of vanishing directions and camera motions.

12



1 200 400

3

0

−3

row numbers

d
eg
re
es

Original Motion

rx
ry
rz

1 200 400

3

0

−3

row numbers

d
eg
re
es

Estimated Motion

rx
ry
rz

1 200 400

3

0

−3

row numbers

d
eg
re
es

Estimated Motion

rx
ry
rz

(a) Synthetic Image (b) Natural Choice (c) Aesthetic Choice

Figure 7: Joint estimation of the RS camera motion and the orthogonal VDs: (a) a synthetically generated
polynomial motion and the extracted LSs on the synthetic image, (b) joint estimation of RS camera motion
and the orthogonal VDs with natural choice of gauge fixing - colors are used to distinguish the VDs, and (c)
joint estimation with aesthetic choice of gauge fixing.
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(a) X-axis only (b) Hmre = 9.78p (c) Hmre = 3.35p

(d) Y -axis only (e) Hmre = 4.90p (f) Hmre = 1.03p

(g) Z-axis only (h) Hmre = 1.04p (i) Hmre = 0.70p

Synthesized Image [26] [Ours]

Figure 8: Comparison of the proposed method with [26]: (a), (d) and (g) are the synthesized RS images
where the motions are generated only along X-axis, Y -axis and Z-axis respectively. Images (b), (e) and (h)
are the corresponding results by [26]. Images (e), (f) and (i) are the results by the proposed method. Hmre is
the average error (in pixels) of the original image and restored image upto a global rotational homography.
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(a) |RF | = 196.58, σR = 7.60 [9] (b) |RF | = 186.44, σR = 7.31 [26] (c) |RF | = 212.39, σR = 8.40 [Ours]

(d) |RF | = 237.27, σR = 3.49 [12] (e) |RF | = 229.44, σR = 6.63 [26] (f) |RF | = 239.83, σR = 4.94 [Ours]

Figure 9: Comparison on the image sequences: (a)-(c) Results on clip03.mov sequence from [9] captured
by an iPhone. (d)-(f) Results on nxs_wobble_6_dual.mov sequence from [12] captured by Nexus
S. A selected image-pair from each of the sequences is displayed in separate rows for better qualitative
comparison. The inliers-outliers are displayed only on the second image (bottom row) of the image pairs
along with the mean and std of the number of inliers. The estimated VDs are also displayed.
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(a) |RF | = 148.90, σR = 2.47 [16] (b) |RF | = 196.44, σR = 5.23 [26] (c) |RF | = 208.64, σR = 5.67 [Ours]

Figure 10: Comparison of the proposed method with [16] and [26] applied on a video sequence. We display
the results on a image-pair of the sequence in separate rows, where inliers-outliers are displayed only on the
second image.
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