Encoder Based Lifelong Learning - Supplementary materials

Amal Rannen* Rahaf Aljundi*

Mathew B. Blaschko

Tinne Tuytelaars

KU Leuven
KU Leuven, ESAT-PSI, IMEC, Belgium

firstname.lastname@esat.kuleuven.be

1. Analysis of the main method

In this section, we present a detailed analysis of the main
contribution of the paper and demonstrate its theoretical
grounding.

The following derivations are based on the hypothesis
that all the functions involved in the model training are Lip-
schitz continuous. The most commonly used functions such
as sigmoid, ReLU or linear functions satisfy this condi-
tion. It is also the case for the most commonly used loss
functions, e.g. softmax, logistic, or hinge losses. Note that
squared and exponential losses are not Lipschitz continu-
ous, but this is not a significant limitation as such losses are
less frequently applied in practice due to their sensitivity to
label noise.

Definition 1. We say that a function f is Lipschitz continu-
ous if and only if there exist a constant K such that:

V(.), [If (@) = fW)ll < K|z -y
1.1. Relation between Encoder based Lifelong
Learning and joint training

In the sequel, we use the same notation as in the main
paper. In a two-task scenario, we propose to use the follow-
ing objective to train a network using only the data from the
second task:

R =E[(Ty 0T o F(x®),y3))
+ lyist(Ty o T o F(X®)), T} o T* 0 F*(X?))
+ Sl (Wene (X)) = o(Werne FH(X @)L, (1)
In the ideal case where we can keep in memory data from

the first task, the best solution is to train the network jointly
by minimizing the following objective:

E[((TyoToF (X)), YD) +E[((TyoToF (X)),)]
)

* Authors with equal contribution

Proposition 1. The difference between [2) and
E[¢(Tyo To F(X®), YD) 4 4(Ty 0T o F(XP) T o
T* o F*(X®))] can be controlled by the independent
minimization of the knowledge distillation loss and five

terms: (@), @), @), (I0), and (TI).

Proof. From Lipschitz continuity, we deduce that the dif-
ference between (Z) and E[((Ty 0 T o F(X(2), Y2)) +
Ty oT o F(XP), Ty o T* o F*(X?)))] is bounded, and
we can write for any vector norm ||.||:

|0(Ty o ToF (X)), Yy
— Ty 0T o F(XP), T o T* o F*(X?))]
< Ki|F(xM) = F(x®))] 3)
+ YW — Ty o T o FH(XP). @

(@) is related to the classification error on the first task. In-
deed, using the triangle inequality, we can write:

PV =Ty o T* 0 F* (@)
<YV = Tr o T o Fr (M) Q)
+ | T3 o T* o F*(XWM) — T3 o T* o F*(XP))]
(0)

Note that all the terms on the right hand side of the inequal-
ity do not change during training of task 2, and thus cannot
be controlled during the second training phase. Moreover,
(®) depends only on the capacity of the network and is there-
fore not influenced by the encoder based lifelong learning
scheme. () is the result of using X'(?) instead of X1, In
order to reduce the effect of this shift, we use the knowledge
distillation loss [[1] as in the Learning without Forgetting
(LwF) method [3]].

On the other hand, expression (3) is bounded as well (us-

ing again the triangle inequality):

IF(x®) = F(x®)|| < |[F(x®) = FxM)| ()
+[IFH(XW) —ro Fr(xW))
(®)
+[lro F*(xM) —ro F*(x®))|
©)
+ [|ro F*(X®) — 10 F(X@))|
(10)

+ |lro F(X®) — F(x®@))].
(11)

This bound generalizes trivially to the expected value of
the loss, which finishes the proof. O

Analyzing each of these terms individually, we see that
our training strategy effectively controls the difference with
the joint training risk:

e (8) is minimized through the autoencoder (AE) train-
ing and does not change during training of task 2.

e (O) does not change during training of task 2. More-
over, | o F*(XM) — ro F*(X®)| measures
the distance between two elements of the manifold that
the AE represents. As the use of weight decay dur-
ing training the task model makes the weights small,
the projection of data into the feature space is contrac-
tive. Through our experiments, we observed that r is
also contractive. As a result, this distance is signifi-
cantly smaller than || X(Y) — X(2)||. The experiment in
Sec. supports this observation.

e (I0) is controlled during the training thanks to the
second constraint we propose to use.

e (LI) is the part of the features that we propose to re-
lax in order to give space for the model to adjust to
the second task as explained in Sec. 3.3 in the main
text. Indeed, if we control this distance, the features
are forced to stay in the manifold related to the first
task. This will result in a stronger conservation of the
first task performance, but the training model will face
the risk of not being able to converge for the second
task.

. is a term that we cannot access during train-
ing. However, we observed that this distance is ei-
ther decreasing or first increasing then decreasing dur-
ing the training. An explanation of this behavior is
that in the beginning ¢(Th o T o F(X®?), Y?)))
may have a bigger influence on the objective, how-
ever, after decreasing the loss for the second task,
{(Tyo To FX),Tfo T o F*(X®)) and

0 (WeneF(XP®)) — 0(WeneF*(X?))]|2 tend to
push F towards F™*. Figure 2] and Section [T.4] support
this observation.

This derivation motivates the code distance that we propose
to use. It also elucidates the sources of possible divergence
from joint-training.

1.2. Multiple task scenario

Each time a task is added, a new source of divergence
from the joint-training objective is added. The difference
with grows with 7. Indeed, at each step, an extra irre-
ducible || o F*(X(T=1) —ro F*(X(T))| is added. More-
over, for each task, the autoencoders of the previous tasks
are trained using the corresponding feature extractors. The
remaining difference between the two losses that is neither
directly controlled nor decreasing while training the model
can be expressed as follows (for a constant K):

-
K(Z ey 0 FED(X D) — gy 0 PO (X))

t=2
(12)
.
3 llrer 0 F(AT) = P a3
t=2
T2
2 o FETHA®) —ro F<*vt>(x<“>ll>»
t=1
(14)

where F'(**) is the feature extraction operator after train-
ing the model on the task ¢ data. As observed for (9), ex-
pressions and remain small and the conclusion of
the experiment in Sec. holds also for these distances.
Therefore, their effect on the growth of the difference with
joint-training is minimal. In contrast to the other terms,
as for (TI), controlling (I3) may prevent the network from
converging for the new task. Thus, relaxing these distances
is an important degree of freedom for our method.

1.3. Autoencoder training: choice of \

As stated in the main text, the autoencoder training aims
to solve the following minimization problem:

argmgnIE(Xm,ym)[AHr(F*(X(l))) — F*(xM)]l, (15)
+HUTF o T (r(FH (X M), YW,

where ¢ is the loss function used to train the model on the
first task data, and A is a hyper-parameter that controls the
compromise between the two terms in this loss. In our ex-
periments, A is tuned manually in order to allow the con-
vergence of the code loss and the classification loss on the
training data. Figure [I] shows the evolution of these losses

for the training and validation samples of ImageNet during
the training of an autoencoder based on the convb features
extracted with AlexNet and VGG-verydeep-16. X is set to
1079 in all cases, as this value makes both the code loss and
the classification loss decrease.

1.4. Behavior Analysis

To examine the effect of our representation control over
the learning process, we perform an analysis on the distance
between the representation obtained over the learning pro-
cedure and the one that is optimal for the first task. We
use Flower — Scenes— Birds as a test case and compute
the distance for each epoch between the current features of
the Flowers dataset F'(X'1) and that obtained by the initial
Flowers network F*(X'1), as shown in Figure In practice,
we aimto minimize:

N
1
By =52 <E<TT oTo F(X{™), v
=1

71
+ 3 laiat(Tio T o F(XT), Ty 0 T% 0 F*(X7))

t=1

T-1
a T w3y (T
+ 3 o Wanet FXT)) = 0(Wene, P (X ’))H%).
t=1

(16)

In the beginning of the training, the leading term in Eq.
is the loss related to the new task 7. Thus, in the first stage,
the model is driven towards optimizing the performance of
the most recent task. This results in a quick loss of perfor-
mance for the previous tasks, and an increase in the other
loss terms of the objective. Then, the second stage kicks
in. In this stage, all the terms of Eq. (I6) contribute and
the model is pushed towards recovering its performance for
the previous tasks while continuing improving for the most
recent one. Gradually, F/(X'") gets again closer to F'*(X'1),
until a new equilibrium is reached.

1.5. Empirical study: F and r are contractive

This experiment aims to show empirically that || X' (1) —
X@)|| is significantly larger than ||r o F*(X™M) — r o
F*(X®)]| using the 5 norm. To have empirical evidence
for this observation, we conducted the following experi-
ment:

1. First, we generate random inputs for the model from
two different distributions. We use normal distribu-
tions with uniformly distributed means and variances.

2. Then, we compute the features of these inputs (output
of F).

3. These features are fed to the AE to compute the recon-
structions.

Samples Features Reconstructions
Exp. 1 22998 33.05 0.21

+0.065 +0.066 £0.0024
Exp.2 10176.54 106.60 0.21

+41.17 +0.32 £0.0027

Table 1. Showing that F' and r are contractive: Mean MSE of 50
samples from random Gaussian distribution, of their correspond-
ing features and reconstructions over 500 trails - The main model
and the AE are trained on Flowers dataset. As we move from left to
right in the table, the entries in the columns decrease significantly
verifying that the mappings are contractive.

Samples Features Reconstructions
Exp. 1 230.02 9.48 1.55

£0.063 +0.022 +0.01
Exp.2 10173.11 61.29 2.12

+41.35 +0.18 £0.013

Table 2. Showing that F' and r are contractive: Mean MSE of 50
samples from random Gaussian distribution, of their correspond-
ing features and reconstructions over 500 trails - The main model
and the AE are trained on Imagenet dataset. As we move from left
to right in the table, the entries in the columns decrease signifi-
cantly verifying that the mappings are contractive.

4. The mean squared error (MSE) between the samples,
the features and the reconstructions are stored.

5. This procedure is repeated for several trials. Each time
a different pair of distributions is used. Finally, the
mean of the obtained MSE is computed.

We repeat this experiment twice. In the first instance, the
mean and variance of the Gaussian distributions are gener-
ated in a way to have relatively small distances between the
samples, and in the second we force the samples to have
bigger distance. Tables [T] and [2] show the results of this
experiment. The numbers in Table [T] are computed using
AlexNet fine-tuned on Flowers dataset, and the AE trained
as explained in Sec. 3.3 (in the main text) on the features
of Flowers extracted using AlexNet convolutional layers af-
ter convergence. We report in this table the mean MSE and
the error bars obtained with 50 generated samples from 500
different pairs of Gaussian distributions. The numbers in
Table [2] are computed similarly but from the AlexNet and
the AE related to ImageNet. In all cases, the difference be-
tween the samples is many orders of magnitude larger than
the difference between the reconstructions indicating that
the mapping is indeed contractive, and the residual error
from this step is minimal.

1.6. Choice of F and T

In this work, we select F' to be the convolutional layers
and T to be the fully connected (fc) layers. Here, we present

Code error (x 10°°)

—&— Training
—=— Validation

Classification error

—&— Training
—=— Validation

20 40 60 80 0 20 40 60 80

(a) Alexnet

Code error (x 10°%)

—&— Training
—=— Validation

Classification error

—— Training
—=— Validation

)
0.195 &

0.185

0.175

(b) VGG

Figure 1. Training of Alexnet and VGG-verydeep-16 based autoencoders for ImageNet - The objective makes the code loss and the
classification loss decrease. The training is stopped when we observe a convergence of the classification loss.

90

= |IF(x1)-F*(X1)||

80
70
60
50
40
30

20

10

0 10 20 30 40 50
Number of Epochs

Figure 2. Distance between the representation obtained during
training of the Birds task given Flowers samples and the origi-
nal representation for Flowers network. Starting from the Scenes
network trained using our method after Flowers.

the motivation behind our choice. The fc-layers project the
output of convolutional blocks to decreasing dimensions.
Therefore, the later we apply the autoencoder, the less infor-
mative features it captures. Consequently, when we apply
our loss after the shared task operator T, we expect more for-
getting. We run experimnets with our loss placed after each
of the fully connection layers. However, unfortunately, in
our deep networks there is a dropout layer between the fc-
layers. For AlexNet, learning the autoencoder at the end of
the shared task operator (fc7) means that when training the
new task, the projection of the samples on the submanifold
may change drastically between epochs because the oper-
ator itself is changing. As a result the code loss will give
an inaccurate estimation of the distance which in turn will
not prevent the forgetting. Therefore, in our experiments,
using our loss after fc7 could not help in reducing the for-
getting over LWF. When placing the autoencoder after fc6
before the dropout, we get more forgetting than with the au-
toencoder after conv5, in the case of ImageNet — CUB :
55.12% vs 55.3%, significantly different (N-1 Chi-squared

test, p = 0.3215).

2. Additional experiments

The experiments in this section aim to show that the suc-
cess of the proposed method is independent of the chosen
model. For this purpose, we train VGG-verydeep-16 [6] in
a two-task image classification scenario and compare our
method against the state-of-the-art (LwF) [3]].

Tested scenario We test our method and LwF on a two-
task scenario starting from ImageNet (LSVRC 2012 sub-
set) [5] (more than 1 million training images) then training
on MIT Scenes [4] for indoor scene classification (5,360
samples). The showed results are obtained on the test data
of Scenes and the validation data of ImageNet.

Architecture We experiment with VGG-verydeep-16 [6]
due to its popularity and success in many image classifica-
tion tasks. The feature extraction block F' corresponds to
the convolutional layers. Note that this architecture has fea-
ture extractor twice as deep as AlexNet [2] (used in the main
text). As for the experiments conducted using AlexNet,
the shared task operator T corresponds to all but the last
fully connected layers (i.e., fc6 and fc7), while the task-
specific part 7; contains the last classification layer (fc8).
The used hyperparameters are the same as in the main text:
same a (10~3) for the training of our method, and same
A (107) for the autoencoder training. The used architec-
ture for the autoencoder is also similar to the main text (2-
layers with a sigmoid non-linearity in between) with a code
of 300 entries. Figure [TI(b)] shows the evolution of the code
error and the classification error during the training of the

Model Size Feature size Autoencoder size
AlexNet 449 MB 9216 10 MB (2.2%)
VGG 1.1 GB 25088 28 MB (2.5%)

Table 3. Size of the used autoencoders compared to the size of
the models during training. The model size corresponds to the
required memory during training. The feature size corresponds to
the length of the feature extractor output.

autoencoder on ImageNet features extracted using VGG-
verydeep-16.

Autoencoder size To illustrate the growth of the size of
the autoencoder with the size of the model, we show in Ta-
ble3|the memory required by AlexNet and VGG-verydeep-
16 while training for Scenes after ImageNet, along with
the autoencoder input length (Feature size) and the mem-
ory required by the autoencoder during training with our
method. Naturally, the autoencoder size grows with the fea-
ture length, but remains very small comparing with the size
of the global model.

Results: Method behavior comparison Figure 3| shows
the evolution of the model performance for both tasks, Im-
ageNet and Scenes, when trained with our method (red
curves) and with LwF (blue curves).

Our method shows a better preservation of the perfor-
mance on ImageNet. Even if the classification error grows
for both methods, it increases slower in our case. After 20
epochs, the performance on ImageNet is 1% higher using
our method.

The test and train errors on Scenes highlight an interest-
ing characteristic of our method. The use of the code loss
on top of LWF appears to act as a regularizer for the training
on Scenes. Our method shows a slightly higher training er-
ror, and a better generalization. VGG-verydeep-16 is a large
model, and the risk of overfitting while training on a small
dataset like Scenes is higher than for AlexNet. A stronger
regularization (using a higher value of o) may thus result in
an improvement of the behavior of our method.

Conclusion From this experiment, we observe that the
convergence of the autoencoder training and the improve-
ment observed over LWF are not dependent on the used ar-
chitecture. Moreover, the additional memory required by
our method remains small with respect to the size of the
global model.

References

[1] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge
in a neural network. szat, page 9, 2015.

(2]

(3]

(4]

(5]

(6]

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet clas-
sification with deep convolutional neural networks. In Ad-
vances in neural information processing systems, pages 1097—
1105, 2012.

Z.Liand D. Hoiem. Learning without forgetting. In European
Conference on Computer Vision, pages 614-629. Springer,
2016.

A. Quattoni and A. Torralba. Recognizing indoor scenes. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 413-420, 2009.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Im-
agenet large scale visual recognition challenge. International
Journal of Computer Vision, pages 211-252, 2015.

K. Simonyan and A. Zisserman. Very deep convolutional net-
works for large-scale image recognition. arXiv:1409.1556,
2014.

Test error on Scenes Train error on Scenes

Error on ImageNet
0.37 : 9T 0.29 10°
—A— LwWF
0.365 ——
0.285 |+ &
0.36 r 107!
0.28
0.355
5 5 5
~ 035 | - 0275 | - 1072
a o &
P = P
0.345
0.27
0.34 103
0.265
0.335 f
0.33 : : 0.26 : : 107 : :
0 10 20 30 0 10 20 30 0 10 20 30
Epochs Epochs Epochs

Figure 3. Comparison between our method (red) and LwF (blue). Left : Evolution of the error on ImageNet validation set; it shows a
slower loss of performance on ImageNet for our method - Center: Evolution of the error on Scenes test set - Right: Evolution of the error
on Scenes training set. Center and Right suggest that our method benefits from a better regularization than LwF.

