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Transformation Costs for GLA
Here, we detail on the calculation of the change of objec-

tive for the transformations applied in GLA (c.f . Sec. 3.1).
We start with setParent. Setting a as parent of b will
change the objective by

∆set
ab = cab − c+b − 1 (|children(a)| = 0) c−a , (1)

where cab = −∑e∈Eab
ce, c+a =

∑
v∈Va

c+v and 1 (. . .) is
the indicator function. It accounts for the activated arc ab,
the fact that b no longer marks the birth of a new cell and,
if a did not have a child previously, it takes the vanishing
termination cost into account. A similar reasoning applies
to changeParent. When we change the parent of b from a′

to a, we get the following transformation cost:

∆change
a′b→ab =cab − 1 (|children(a)| = 0) c−a

− ca′b + 1 (|children(a′)| = 1) c−a′ , (2)

where we have to consider the possibility that a′ could form
a terminus after the transform. Finally, for a merge of two
components a and b of the same frame, we calculate:

∆merge
ab = cab −∆birth

ab −∆term
ab

+
∑

ad∈A:d∈children(b)

cad +
∑

bd∈A:d∈children(a)

cbd , (3)

where the last two sums account for arcs to active children,
which will be contracted into active arcs with the merge, and
therefore change their state and affect the objective. Birth
∆birth

ab and termination costs ∆term
ab depend on the current

parents and children, that is:

∆term
ab =


c−a if hasChild(b) ∧ ¬hasChild(a) ,

c−b if hasChild(a) ∧ ¬hasChild(b) ,

0 otherwise ,
(4)
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and

∆birth
ab =


c+a + cpa if hasParent(b) ∧ ¬hasParent(a) ,

c+b + cpb if hasParent(a) ∧ ¬hasParent(b) ,

0 otherwise ,
(5)

with pa and pb being the arc from the parent of b or a, re-
spectively. Note that the merge is not feasible if a and b
have distinct parents.

Minimum Cost Branching Coefficients
We derive the weights for the minimum cost branch-

ing problem (MCBP) used in our KLB heuristic (Sec. 3.2).
Given a fixed intra-frame partitioning and the correspond-
ing G = (V,A), we note that all edges Eab of an arc
from component a to component b must have the same state
(otherwise, space-time constraints would be violated). We
can thus represent them with a set of binary arc indicator
variables yab satisfying ∀e ∈ Eab : 1 − yab = xe. Si-
miliarly, birth and termination indicator variables x+ and
x− can be grouped with respect to their component, i.e.
∀v ∈ Va : y+a = x+

v (and analogous for y− and x−), since
all nodes v within a cell must have the same state. Substi-
tuting these branching variables into (4), leads to:∑

e∈E
cexe +

∑
v∈V

c+v x
+
v +

∑
v∈V

c−v x
−
v

=
∑

e∈
⋃

t∈T Et

cexe +
∑
ab∈A

∑
e∈Eab

ce(1− yab)

+
∑
a∈V

y+a
∑
v∈Va

c+v︸ ︷︷ ︸
c+a

+
∑
a∈V

y−a
∑
v∈Va

c−v︸ ︷︷ ︸
c−a

=
∑

e∈
⋃

t∈T Et

cexe +
∑

e∈
⋃

t∈T Et,t+1

ce +
∑
ab∈A

yab

(
−
∑

e∈Eab

ce

)
︸ ︷︷ ︸

cab

1



+
∑
a∈V

y+a c
+
a +

∑
a∈V

y−a c
−
a

=
∑

e∈
⋃

t∈T Et

cexe +
∑

e∈
⋃

t∈T Et,t+1

ce

+
∑
ab∈A

cabyab +
∑
a∈V

y+a c
+
a +

∑
a∈V

y−a c
−
a ,

where the first sum only depends on the fixed intra-frame
partitioning, the second term is constant and the remain-
ing three terms correspond to the objective of the MCBP,
where we identify the coefficients cab, c+a and c−a . When-
ever the arcs selected by y form a branching (which at most
bifurcates), then the corresponding x satisfy morality (and
bifurcation) constraints.

Proofs for Section 4

Proof of Lemma 4. We first show that any x ∈ {0, 1}E
satisfying all of (1) – (3) also satisfies (13) and (14) by
contraposition. First, assume x ∈ {0, 1}E violates an in-
equality of (13) for some t ∈ T , {v, w} ∈ Et ∪ Et,t+1

and chordless vw-path P . We distinguish the following
cases: If {v, w} ∈ Et and P is a path in Gt, then the in-
equality is included in (1). If {v, w} ∈ Et,t+1, then the
inequality is included in (2). It remains to consider the case
that {v, w} ∈ Et and P is not entirely contained in Gt.
Let {vt, vt+1}, {wt, wt+1} ∈ Et,t+1 with vt, wt ∈ Vt be
the first and the last inter frame edges in P , respectively.
Furthermore, let Pvt+1wt+1

be the subpath of P between
those edges. Now, either there is a vtwt-cut S in Gt such
that xS = 1 or there is a vtwt-path P ′ in Gt such that
xP ′ = 0. It is clear that P ′ can be extended to a vw-path of
edges labeled 0, because xP = 0. This yields either an in-
equality of (3) corresponding to S, {vt, vt+1}, {wt, wt+1}
and Pvt+1wt+1

or an inequality of (1) corresponding to
{v, w} ∪ P ′ that is violated by x.

Next, suppose x ∈ {0, 1}E violates an inequality of
(14) for some t ∈ T , {v′, w′} ∈ Et, a v′w′-cut S in
Gt and a chordless v′w′-path P in G+

t . Then xS = 1
and xP = 0. Clearly, x violates the inequality of (3)
corresponding to S, {vt, vt+1}, {wt, wt+1} and Pvt+1wt+1

,
where {vt, vt+1}, {wt, wt+1} and Pvt+1wt+1

are defined
similar to the last paragraph.

For the converse, we show that if x ∈ {0, 1}E satisfies
the inequalities (13) and (14), then it also satisfies (1) – (3).
Any cycle in G+

t which is not chordless can be split into
two cycles contained in Gt, G

+
t or Gt+1 which share ex-

actly one edge. Therefore, any inequality of (1) – (2) is im-
plied by a combination of inequalities from (13). This is a
standard argument for multicut polytopes, cf., for instance,
[1]. Moreover, for any {vt, wt} ∈ Et and any vtwt-cut S in
Gt it holds that {vt, wt} ∈ S. Thus, reapplying the previous

argument and the simple fact that

1−
∑
e∈S

(1− xe) ≤ 1− (1− xvtwt) = xvtwt ,

we conclude that the inequalities (3) are implied by a com-
bination of inequalities from (13) and (14).

Proof of Lemma 5. We show the claim only for birth con-
straints since the proof for termination constraints is analo-
gous. Let x ∈ X ′G and x+, x− ∈ {0, 1}V . Apparently, if
(15) is satisfied, then∑

e∈S\E(Vt\{v},Vt+1(v))

(1− xe) ≤
∑
e∈S

(1− xe)

implies that (6) also holds. Conversely, suppose (15) is
violated. Then there exists some t ∈ T and v ∈ Vt+1,
S ∈ Vtv-cuts(G+

t ) such that x+
v = 0 and xe = 1 for all

e ∈ S \ E
(
Vt(v), Vt+1 \ {v}

)
. Assume (6) is not violated,

then there is a path P in G+
t from some node in Vt to v with

xP = 0. Then P must have non-empty intersection with
E
(
Vt(v), Vt+1 \ {v}

)
. Let u ∈ Vt(v) and v′ ∈ Vt+1 \ {v}

be such that {u, v′} ∈ P . Since xuv = 1 it follows that x
violates the inequality

xuv ≤
∑

e∈Puv

xe

of (2) where Puv is the subpath of P from u to v. This is a
contradiction to x ∈ X ′G.

Additional Results
We report additional, detailled results in terms of run-

time, bounds, objective for feasible solutions, and derived
gaps obtained on the two additional instances Flywing-wide
I and II in Table 1. In Fig. 1, we present a more detailled
analysis of the effect of locality parameter dMCBP of our
KLB heuristic.
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Table 1. Detailed quantitative comparison of algorithms for the
MLTP on the two additional instances Flywing-wide I and II.
BestGap is calculated using the tightest bound of any algorithm.

Flywing-wide I
Method Time / s objBest objBound BestGap

GLA 0.72 -89895.00 0.0293
KLB-d=10 104.09 -91316.14 0.0133
KLB-d=inf 477.50 -91316.14 0.0133
ILP (ours) 10000.80 -91774.40 -92528.30 0.0082

Flywing-wide II

GLA 3.43 -167029.00 0.0214
KLB-d=10 3359.34 -168998.95 0.0095
KLB-d=inf 9129.41 -168998.95 0.0095
ILP (ours) 10245.80 -168862.00 -170606.00 0.0103
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Figure 1. Comparison of varying dMCBP within KLB in terms of
runtime (left) and obtained objective (right). Parametrizations that
were found to (sometimes) misjudge the change of objective due
to a too restricted locality are marked with ×, while the others are
depicted as . For the latter parametrizations, we observe that all
obtain the same objective value on all instances. However, their
runtime varies considerably for the larger two Flywing-wide in-
stances.


