
Octree Generating Networks:
Efficient Convolutional Architectures for High-resolution 3D Outputs

Supplementary Material

32 64 128 256 512

0.01

0.1

1

10

Resolution

Pe
ak

m
em

or
y

us
ag

e,
G

B

OGN
Quadratic

Dense
Cubic

Figure 1. Memory consumption for very slim networks, forward
and backward pass, batch size 1. Shown in log-log scale - lines
with smaller slope correspond to better scaling.

A. Computational efficiency

In the main paper we have shown that with a practi-
cal architecture our networks scale much better than their
dense counterparts both in terms of memory consumption
and computation time. The numbers were obtained for the
”houses” scene from the BlendSwap dataset.

In order to further study this matter, we have designed a
set of slim decoder networks that fit on a GPU in every res-
olution, including 5123, both with an OGN and a dense rep-
resentation. The architectures of those networks are similar
to those from Table 7, but with only 1 channel in every con-
volutional layer, and a single fully-connected layer with 64
units in the encoder. The resulting measurements are shown
in Figure 1 for memory consumption and Figure 2 for run-
time. To precisely quantify the scaling, we subtracted the
constant amount of memory reserved on a GPU by caffe
(190 MB) from all numbers.

Both plots are displayed in the log-log scale, i.e., func-
tions from the family y = axk are straight lines. The

32 64 128 256 512

0.01

0.1

1

10

Resolution

It
er

at
io

n
tim

e,
s

OGN
Quadratic

Dense
Cubic

Figure 2. Iteration time for very slim networks, forward and back-
ward pass, batch size 1. Shown in log-log scale - lines with smaller
slope correspond to better scaling.

slope of this line is determined by the exponent k, and the
vertical shift by the coefficient a. In this experiment we
are mainly interested in the slope, that is, how do the ap-
proaches scale with increasing output resolution. As a refer-
ence, we show dashed lines corresponding to perfect cubic
and perfect quadratic scaling.

Starting from 643 voxel resolution both the runtime and
the memory consumption scale almost cubically in case of
dense networks. For this particular example, OGN scales
even better than quadratically, but in general scaling of the
octree-based representation depends on the specific data it
is applied to.

B. Train/test modes

In Section 4.4 of the main paper, we described how
we use the two propagation modes (Prop-known and Prop-
pred) during training and testing. Here we motivate the pro-
posed regimes, and show additional results with other com-
binations of propagation modes.



Training Testing 23 filters 43 filters IntConv
Known Known 0.904 0.907 0.907
Known Pred 0.862 0.804 0.823
Pred Known 0.898 0.896 0.897
Pred Pred 0.884 0.885 0.885

Table 1. Reconstruction quality for autoencoders with different de-
coder architectures: 23 up-convolutions, 43 up-convolutions, and
23 up-convolutions interleaved with 33 convolutions, using dif-
ferent configurations of Prop-known and Prop-pred propagation
modes.

When the structure of the output tree is not known at test
time, we train the networks until convergence with Prop-
known, and then additionally fine-tune with Prop-pred - line
4 in Table 1. Without this fine-tuning step (line 2), there is
a decrease in performance, which is more significant when
using larger convolutional filters. Intuitively, this happens
because the network has never seen erroneous propagations
during training, and does not now how to deal with them at
test time.

When the structure of the output is known at test time,
the best strategy is to simply train in Prop-known, and test
the same way (line 1). Additional fine-tuning in the Prop-
pred mode slightly hurts performance in this case (line 3).
The overall conclusion is not surprising: the best results are
obtained when training networks in the same propagation
modes, in which they are later tested.

C. Feature propagation
In the main paper we mentioned that the number of fea-

tures propagated by an OGNProp layer depends on the sizes
of the convolutional filters in all subsequent blocks. In case
of 23 up-convolutions with stride 2, which were used in
most of our experiments, no neighboring features need to
be propagated. This situation is illustrated in Figure 3-A
in a one-dimensional case. Circles correspond to cells of
an octree. The green cell in the input is the only one for
which the value was predicted to be ”mixed”. Links be-
tween the circles indicate which features of the input are
required to compute the result of the operation (convolution
or up-convolution) for the corresponding output cell. In this
case, we can see that the output cells in the next level are
only affected by their parent cell from the previous level.

A more general situation is shown in Figure 3-B. The in-
put is processed with an up-convolutional layer with 43 fil-
ters and stride 2, which is followed by a convolutional layer
with 33 filters and stride 1. Again, only one cell was pre-
dicted to be ”mixed”, but in order to perform convolutions
and up-convolutions in subsequent layers, we additionally
must propagate some of its neighbors (marked red). There-
fore, with this particular filter configuration, two cells in the
output are affected by four cells in the input.

up-conv
filter: 2
stride: 2

up-conv
filter: 4
stride: 2

conv
filter: 3
stride: 1

zero-padding

filled/emptymixed

propagated
neighbors

(A)

(B)

Figure 3. The OGNProp layer propagates the features of ”mixed”
cells together with the features of the neighboring cells required
for computations in subsequent layers. We show the number
of neighbors that need to be propagated in two cases: 23 up-
convolutions (A), and 43 up-convolutions followed by 33 convo-
lutions (B). Visualized in 1D for simplicity.

Generally, the number of features that should be prop-
agated by each OGNProp layer is automatically calculated
based on the network architecture before starting the train-
ing.

D. 3D shape from high-level information: ad-
ditional experiments

D.1. MPI-FAUST

To additionally showcase the benefit of using higher res-
olutions, we trained OGNs to fit the MPI-FAUST dataset
[1]. It contains 300 high-resolution scans of human bodies
of 10 different people in 30 different poses. Same as with
the BlendSwap, the trained networks cannot generalize to
new samples due to the low amount of training data.

Figure 4 and Table 2 demonstrate qualitative and quan-
titative results respectively. Human models from MPI-
FAUST include finer details than cars from ShapeNet, and
therefore benefit from the higher resolution.



643 1283 2563 GT 2563

Figure 4. Training samples from the FAUST dataset reconstructed
by OGN.

64 128 256
0.890 0.933 0.969

Table 2. 3D shape from high-level information on the FAUST
dataset. Lower-resolution predictions were upsampled to 2563

ground truth.

Dataset 1283 2563

Shapenet-cars (full) 0.901 0.865
Shapenet-cars (subset) 0.922 0.931

Table 3. There is no drop in performance in higher resolution,
when training on a subset of the Shapenet-cars dataset.

D.2. Fitting reduced ShapeNet-cars

To better understand the performance drop at 2563 res-
olution observed in section 5.4.1 of the main paper, we
performed an additional experiment on the ShapeNet-Cars
dataset. We trained an OGN for generating car shapes from
their IDs on a reduced version of ShapeNet-Cars, including
just 500 first models from the dataset. Quantitative results
for different resolutions, along with the results for the full
dataset, are shown in Table 3. Interestingly, when training
on the reduced dataset, high resolution is beneficial. This
is further supported by examples shown in Figure 5 – when
training on the reduced dataset, the higher-resolution model
contain more fine details. Overall, these results support our
hypothesis that the performance drop at higher resolution is
not due to the OGN architecture, but due to the difficulty of
fitting a large dataset at high resolution.

E. Shift invariance

The convolution operation on a voxel grid is perfectly
shift invariant by design. This is no longer true for convo-

2563

1283

1283

2563

Full Subset GT 2563

Figure 5. When training on a subset of the Shapenet-cars datset,
higher resolution models contain more details.

lutions on octrees: a shift by a single pixel in the original
voxel grid can change the structure of the octree signifi-
cantly. To study the effect of shifts, we trained two fully
convolutional autoencoders - one with an OGN decoder,
and one with a dense decoder - on 643 models, with low-
est feature map resolution 43 (so the networks should be
perfectly invariant to shifts of 16 voxels). Both were trained
on non-shifted Shapenet-Cars, and tested in the Prop-pred
mode on models shifted by a different number of voxels
along the z-axis. The results are summarized in Table 4.

Shift (voxels) OGN Dense
0 0.935 0.932
1 0.933 0.93
2 0.929 0.925
4 0.917 0.915
8 0.906 0.904

Table 4. Fully-convolutional networks tested on shifted data. Even
though not shift invariant by design, OGN shows robust perfor-
mance.

There is no significant difference between OGN and the
dense network. A likely reason is that different training
models have different octree structures, which acts as an
implicit regularizer. The network learns the shape, but re-
mains robust to the exact octree structure.

F. Network architectures

In this section, we provide the exact network architec-
tures used in the experimental evaluations.



F.1. Autoencoders

The architectures of OGN autoencoders are summarized
in Table 6. For the dense baselines, we used the same layer
configurations with usual convolutions instead of OGN-
Conv, and predictions being made only after the last layer
of the network. All networks were trained with batch size
16.

F.2. 3D shape from high-level information

OGN decoders used on the Shapenet-cars dataset are
shown in Table 7. Encoders consisted of three fully-
connected layers, with output size of the last encoder layer
being identical to the input size of the corresponding de-
coder.

For FAUST and BlendSwap the 2563 output octrees had
four levels, not five like those in Table 7. Thus, the dense
block had an additional deconvolution-convolution layer
pair instead of one octree block. The 5123 decoder on
BlendSwap had one extra octree block with 32 output chan-
nels.

All 643 and 1283 networks were trained with batch size
16, 2563 — with batch size 4, 5123 — with batch size 1.

F.3. Single-image 3D reconstruction

In this experiment we again used decoder architectures
shown in Table 7. The architecture of the convolutional en-
coder is shown in Table 5. The number of channels in the
last encoder layer was set identical to the number of input
channels of the corresponding decoder.

[137× 137× 3]
Conv (7× 7)
[69× 69× 32]
Conv (3× 3)
[35× 35× 32]
Conv (3× 3)
[18× 18× 64]
Conv (3× 3)
[9× 9× 64]
Conv (3× 3)
[5× 5× 128]

FC
[1024]

FC
[1024]

FC
[43 × c]

Table 5. Convolutional encoder used in the single-image 3D re-
construction experiment.

References
[1] F. Bogo, J. Romero, M. Loper, and M. J. Black. FAUST:

Dataset and evaluation for 3D mesh registration. In CVPR,
2014. 2



323 643 (23 filters) 643 (43 filters) 643 (InvConv)
[643 × 1]
Conv (33)

[323 × 1] [323 × 32]
Conv (33) Conv (33)
[163 × 32] [163 × 48]
Conv (33) Conv (33)
[83 × 48] [83 × 64]
Conv (33) Conv (33)
[43 × 64] [43 × 80]

FC FC
[1024] [1024]

FC FC
[1024] [1024]

FC FC
[43 × 80] [43 × 96]

Deconv (23) Deconv (23)
[83 × 64] [83 × 80]

Conv (33)→ l1 Conv (33)
[83 × 64] [83 × 80]
OGNProp

OGNConv(23)→ l2 Deconv (23)
[163 × 48] [163 × 64]
OGNProp

OGNConv(23)→ l3 Conv (33)→ l1
[323 × 32] [163 × 64]

OGNProp OGNProp OGNProp
OGNConv(23)→ l2 OGNConv(43)→ l2 OGNConv(23)

[323 × 48] [323 × 48] [323 × 48]
OGNConv*(33)→ l2

[323 × 48]
OGNProp OGNProp OGNProp

OGNConv(23)→ l3 OGNConv(43)→ l3 OGNConv(23)
[643 × 32] [643 × 32] [643 × 32]

OGNConv*(33)→ l3
[643 × 32]

Table 6. OGN architectures used in our experiments with autoencoders. OGNConv denotes up-convolution, OGNConv* — convolution.
Layer name followed by ’→ lk’ indicates that level k of an octree is predicted by a classifier attached to this layer.



323 643 1283 2563

[43 × 80] [43 × 96] [43 × 112] [43 × 112]
Deconv (23) Deconv (23) Deconv (23) Deconv (23)
[83 × 64] [83 × 80] [83 × 96] [83 × 96]

Conv (33)→ l1 Conv (33) Conv (33) Conv (33)
[83 × 64] [83 × 80] [83 × 96] [83 × 96]
OGNProp

OGNConv (23)→ l2 Deconv (23) Deconv (23) Deconv (23)
[163 × 48] [163 × 64] [163 × 80] [163 × 80]
OGNProp

OGNConv (23)→ l3 Conv (33)→ l1 Conv (33)→ l1 Conv (33)→ l1
[323 × 32] [163 × 64] [163 × 80] [163 × 80]

OGNProp OGNProp OGNProp
OGNConv (23)→ l2 OGNConv (23)→ l2 OGNConv (23)→ l2

[323 × 48] [323 × 64] [323 × 64]
OGNProp OGNProp OGNProp

OGNConv (23)→ l3 OGNConv (23)→ l3 OGNConv (23)→ l3
[643 × 32] [643 × 48] [643 × 48]

OGNProp OGNProp
OGNConv (23)→ l4 OGNConv (23)→ l4

[1283 × 32] [1283 × 32]
OGNProp

OGNConv (23)→ l5
[2563 × 32]

Table 7. OGN decoder architectures used in shape from ID, and single-image 3D reconstruction experiments.


