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1. Introduction

In this supplementary material we elaborate on several
details regarding the experimental setup, provide an addi-
tional comparison with training a supervised network on
small numbers of images and present numerous images giv-
ing a qualitative look at the performance of our method. It
is organized as follows: Sec. 2 gives the additional details
and hyperparameters, Sec. 3 compares quantitatively with
a supervised network and qualitative results are shown in
Sec. 4. We evaluate the learned features on face segmenta-
tion in Sec. 5.

2. Experimental details

As described in Section 4.1 of the main text, we gener-
ate a pair of warps (g1, g2). These are parameterized as Thin
Plate Spline warps, which models the deformation of sev-
eral keypoints along with an affine component. We sample
all parameters from a gaussian with zero mean and the given
standard deviations unless otherwise stated. The source
keypoints are a 10 × 10 regular grid (5 × 5 for MNIST),
whereas each element of the parameter vector defining the
destination keypoints is sampled with standard deviation
σgi,w. For each element we then add with 50% probability
an additional perturbation sampled with standard deviation
σgi,W .

The affine component is parameterised as a similarity
transform with rotation standard deviation σgi,r degrees,
translation σgi,t, and scale σgi,s with mean 1. Note we
operate with normalized coordinated in the range [−1, 1].
Values are shown in Table 1. For faces and cats the input
image dimensions are 100 × 100, which are then cropped
after warping to 80 × 80. For MNIST the input images are
resized to 35×35 then padded with a 5 pixel black border to
be 45× 45. For shoes the 64× 64 initial images are padded
with a 15 pixel white border to be 94× 94.

The pooling layer prior to the diversity loss has pooling
window size 5×5 in all networks except for MNIST and the
AFLW 51 landmark network which have 3× 3 (resulting in
denser coverage of the face area, fig. 8).

gi σgi,w σgi,W σgi,r σgi,t σgi,s
Faces g1 0.001 0.001 0◦ 0 0

g2 0.001 0.01 20◦ 0.1 0.05
MNIST g1 0.005 0.01 15◦ 0.1 0.05

g2 0.005 0.02 20◦ 0.1 0.05
Table 1. Standard deviations used for sampling warp parameters.

Labelled Images Sup. Net Unsup. + Regressor
CelebA + AFLW 8.67 —
AFLW (10,122) 14.25 10.53

20 21.13 13.28
10 22.31 13.85
5 23.85 12.94
1 28.87 14.79

Table 2. Results on AFLW (2995 images, 5 landmarks), varying
the number of images used to train both a supervised network from
scratch and a regressor on top of our unsupervised landmarks.

3. Supervised Network Comparison

In order to further evaluate the advantage of our unsuper-
vised pre-training when a limited number of labelled images
are used for subsequent supervised training, we compare to
training a supervised network from scratch on the same im-
ages (Table 2 and fig. 1). The results reported in the main
text adapted our unsupervised architecture with the addi-
tion of a final pooling layer (stride 2) and fully connected
layer, achieving 23.85 error for 20 images. Here we train a
network more comparable to existing supervised landmark
networks by including pooling layers (stride 2) after the first
three convolutional layers and taking a 64 × 64 input. It
achieves results comparable to existing work when trained
on many images and evaluated on AFLW (8.67, compare to
Table 3 in the main paper) and error of 21.13 on 20 images.
This confirms the advantage of our approach in the case of
limited labelled data.

4. Qualitative Results

We show additional images displaying the results of our
method on different datasets and with different numbers of
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Figure 1. The same data as table 2 in graphical format.

unsupervised landmarks.
The MNIST dataset of handwritten digits provides a sim-

ple setting in which to demonstrate the ability of our ap-
proach to identify landmarks across variations in writing
style. We train separate networks for the digits 3, 5, and
6. The training data is augmented with Thin Plate Spline
transformations and similarity transforms (parameters in
Table 1). For each digit we use 1000 images for valida-
tion and the rest (around 5000) for training. As shown in
fig. 3 the discovered landmarks are robust to rotations and
significant differences in style.

To complement the examples of a 10-landmark network
on cat faces in the main paper, we also show a network with
20 landmarks (fig. 4).

For the CelebA faces dataset (MAFL test subset) we
show examples of a 30-landmark network (fig. 5) and the
results of training our regressor with varying numbers of
landmarks (fig. 7). For the 300-W dataset we show regres-
sion examples for a 30-landmark network (fig. 6). We also
show the result of the 51-landmark network finetuned on
AFLW and the regressor predictions (fig. 8).

In order to evaluate the effectiveness of our network in
cases of illumination variation, we apply our 10-landmark
CelebA network on frontal faces from the Cropped Ex-
tended Yale B1 dataset. This dataset represents a signif-
icantly different domain to that used for training, being
grayscale and tightly cropped. Nevertheless, with the more
moderate lighting variations we get consistent landmarks.
Failure occurs in the cases of hard shadows where there is
little resolvable detail in areas of the face. We can fix this
failure by finetuning to the target dataset, whereupon land-
marks are predicted well across illumination variants. This

1Georghiades, A. S., Belhumeur, P. N., & Kriegman, D. J. From few
to many: Illumination cone models for face recognition under variable
lighting and pose. PAMI 2001
Lee, K. C., Ho, J., & Kriegman, D. J. Acquiring linear subspaces for face
recognition under variable lighting. PAMI 2005

Figure 2. YaleB: Predicted landmarks on two Yale B subjects (held
out during finetuning). Column 1: Original CelebA network, with
poor results in shadows. Column 2: Finetuning from synthetic
warps. Column 3: Finetuning from pairs with different lighting
conditions.

Epoch 5 Epoch 30 Best
From Scratch 78.10% 86.15% 93.59%

Pretrained 90.64% 92.12% 94.46%
Pretrained+ft 90.84% 92.41% 94.82%

Table 3. Pixel accuracy on HELEN when training from scratch,
pretraining using our method (Conv 1-3 frozen) and pretraining
while finetuning all layers

20 Images 50 Images
From Scratch 86.52% 86.91%

Pretrained 90.24% 90.63%
Table 4. Pixel accuracy on HELEN segmentation for a limited
number of training images.

finetuning can be done using synthetic warps as in the main
paper, however we also note that in the cases of datasets like
Yale B which offer aligned pairs of the same subject, we can
simply train based on the identity transformation between
aligned images having different lighting conditions. Both
methods give qualitatively good results as shown in fig. 2.

5. Evaluating learned features
We would like to know if the features obtained using our

method are useful for other tasks. For this we use the task
of face segmentation using the HELEN2 dataset. We resize
the images but do not further crop or preprocess them. We

2Smith, B. M., Zhang, L., Brandt, J., Lin, Z., & Yang, J. Exemplar-
based face parsing. ICCV 2013



use our pretrained 50-landmark CelebA network with the
first three layers frozen and replace the last layer with a 10-
way spatial classification. We get 94.46% pixel accuracy,
compared to 93.59% for the same network configuration
trained from scratch. When we finetune all layers, accu-
racy increases further to 94.82%. This shows that the initial
features learned are useful for general purpose face-based
tasks, and that the learned weights are suitable as a start-
ing point for further adaptation. Convergence is also a lot
quicker when pretrained as shown in Table 3. An additional
advantage of pretraining is that it allows training with fewer
images, which we show for 20 and 50 images in Table 4.



Figure 3. Three 7-landmark networks on MNIST (digits 3,5,6). The first five columns show rotations of the same instance
(0◦, −50◦, −30◦, 30◦, 50◦) the rest show arbitrary instances.



Figure 4. 20-landmark cat network



Figure 5. 30-landmark network on CelebA. Row 1: synthetic warps. Rows 2-3: rotations. Rows 4-6: arbitrary instances.



Figure 6. 30-landmark network and regressor output on 300-W. Green circles are predictions, blue circles are ground truth. The last
example shows a failure case.

Figure 7. Unsupervised landmarks and regressor predictions for 10, 30 and 50 landmark networks in rows 1, 2 and 3 respectively. Green
circles are predictions, blue circles ground truth.



Figure 8. AFLW: Unsupervised landmarks from 51-landmark network and regressor predictions. Green circles are predictions, blue circles
ground truth.


