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1. Introduction
In this supplemental material we add details and quali-

tative results that we were not able to include in the main
submission due to the limited space. We analytically derive
the computational complexity of the various steps of our
method, and discuss ways of reducing it. We also present
additional qualitative results of medial axes computed with
our method, and their respective reconstructions. Finally, in
the zip file for the supplemental material we include a video
showing the execution of the greedy algorithm on a test im-
age (in normal and fast speed). In the video we visualize the
process of selecting disks and covering the image, as well
as the medial axis construction and respective radii.

2. Complexity Analysis
First, we remind the reviewer of the notation for some

useful quantities to make the supplemental material self-
contained. A disk of radius rj ∈ R = {1, . . . , R}, cen-
tered at point pi ∈ XI ⊂ R2, is denoted as Dpi,rj = Dij .
We also assume that XI is a universe of N points in total,
corresponding to the spatial support of an input RGB image
I .

Encodings: Computing the encodings fij at all possible
locations and scales involves convolving the input image
with disk filters of radii 1, . . . , R. The complexity of this
step is:

O(N · 12 +N · 22 + . . .+N ·R2) =

O(N

R∑
r=1

r2) = O(NR(R+ 1)(2R+ 1)/6) = O(NR3).

(1)

Disk cost: The most demanding step in our method is the
computation of the disk costs

cij =
∑
k

∑
l

‖fij − fkl‖2 ∀k, l : Dkl ⊂ Dij . (2)

This quantity must be computed at all location-radius com-
binations, and for all the contained disks of radii r ∈ R.

Let r, r′ ∈ R with r < r′ and consider a disk of radius
r′, centered at point p′, Dp′,r′ . A fully contained disk
Dp,r ⊂ Dp′,r′ can be placed anywhere inside the disk
(x − xp′)2 + (y − yp′)2 < (r′ − r)2. It follows that the
number of such contained disks for a given radius r′ is ap-
proximately

Nr′

d =

r′∑
r=1

π(r′ − r)2 = π

r′∑
r=1

(r′)2 − 2r′r + r2 = k(r′)3,

(3)

where k is a constant factor. Summing over all possible
radii r′ ∈ R we have that the total number of disks at p is

Nd =

R∑
r′=1

Nr′

d =

R∑
r′=1

k(r′)3 =
k(R(R+ 1))2

4
∼ R4.

(4)
This is the (approximate up to a constant factor) number of
contained disks and respective encodings that are used to
compute cij at all possible scales r ∈ R, at a single point
in the image. Repeating this process for all N points in the
image domain yields a total complexity of O(NR4).

Greedy approximation algorithm: At each step of the
greedy algorithm we cover at most O(R2) pixels in XI , but
we also have to update costs for all partially and entirely
covered disks, at all scales. The greedy algorithm has com-
plexity O(R2N

∑R
r=1 r

2) = O(NR5).

2.1. Reducing Complexity

The O(NR4) complexity derived in the previous sec-
tion can be reduced through a combination of the follow-
ing: i) rewriting Equation (2) in an equivalent form that is
amenable to efficient computation using convolutions; ii)
using cumulative sums to avoid redundant computations.
Since we will release our code, we do not elaborate further
on i).

We provide an intuitive explanation for ii): Suppose we
use

∑
Dij

f to denote the sum of a quantity f within a
disk area Dij of radius rj . Naively calculating this quan-
tity for a disk of radius rl > rj involves unnecessary re-
computations of f in the area Dij ⊂ Dil. We can avoid



these redundant computations, observing that

∑
Dij

f =

R∑
j=1

∑
Cij

f, (5)

where Cij is the circle of radius rj , centered at pi. Using
the relationship in Equation (5) we reduce the complexity of
computing feature encodings at all locations from O(NR3)
to O(NR2) and the complexity of disk cost computation
from O(NR4) to O(NR3).

Using a shape other than disks in our approach allows
us to reduce complexity even more. For example, one can
consider using rectangles or squares to approximate or re-
place disks, as in [1, 4]. In that scenario, pre-computing
an integral image would allow us to use a fixed number
of operations per image point, further reducing the com-
plexity of encoding and disk cost computation to O(NR)
and O(NR2), respectively. Similarly, the complexity of the
greedy algorithm can be reduced to O(NR3). We aim to
explore this in future work.

3. Qualitative results

In the following pages we illustrate more examples of
qualitative results. In Figure 1 we are showing results for
the task of medial axis extraction. From left to right we are
showing a) the input image; b) the extracted medial axes;
c) the medial connected components after grouping; and d)
the ground-truth medial axes in BMAX500.

In column b) the color of the medial axes represents the
encoding of the respective disk-shaped region in the input
image, and we use black color to denote non-medial points.
Note that dark regions in the original image result in axes
with low contrast w.r.t. to non-medial points; please mag-
nify and view in color.

For column c) we are showing the grouped medial con-
nected components after using our agglomerative scheme
on the AMAT’s output. We use (random) color coding to
highlight different groups. Note that using the criterion
of similarity in terms of both scale-space proximity and
appearance proximity, the resulting groups correspond to
meaningful, distinct ares in the image; e.g. a single con-
nected component for the sky and another one for the per-
son’s skirt in Figure 1, third row. Since there are multiple
segmentations available for each image in BSDS500, in col-
umn d) we are showing the medial axis ground-truth of the
segmentation that results in the best GT-SKEL reconstruc-
tion quality.

In Figure 2 we compare reconstruction results obtained
by AMAT and the three baselines we described in the paper
(MIL, GT-SEG, GT-SKEL). Again, we can see that with
AMAT we can recover more detail than with the alterna-
tives. As a sidenote, one can also observe that the output

of our algorithm resembles an artistic rendering of the input
image, such as the ones illustrated in [2, 3].
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Figure 1: Medial axes. From left to right: Input image, AMAT medial axes (axis color indicates the respective encodings f,
and black is used for unused points), connected components of medial points (color-coded), ground-truth skeletons.



Figure 2: Image reconstruction. From left to right: Input image, MIL [4], GT-seg, GT-skel, AMAT.


