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1. Parametric vs. non-parametric decoders

Here we discuss the bene�ts of using non-parametric and
domain-speci�c renderers, over learned decoders. Both the
proposed model and CycleGAN [5] can be viewed as au-
toencoders: the input is �rst transformed into a target do-
main, and then transformed back to its original space. A
parametric decoder could be more desirable, for the reason
that we do not need to hand-engineer a mapping function
from the target domain back to the inputs. However, sim-
ply using reconstruction loss and adversarial loss does not
guarantee that the predictions look spatially similar to the
inputs. In tasks such as image-to-image translation, spatial
precision can be of critical importance. With a parametric
decoder, the transformed input can be viewed as a infor-
mation bottleneck, and as long as the decoder can correctly
“guess” the �nal output from the transformed input (i.e., the
code), the code is valid and the solution is optimal.

To support this point, we conduct an experiment on im-
age inpainting using the MNIST dataset. Similar to the
parametric encoder-decoder described in the main text, the
network has two main parts: (1) an encoder that transforms
the input (a partially obscured image of a digit) into pre-
diction (a hallucinated digit), and (2) a decoder that trans-
forms the prediction back into the input. Instead of using
convolutional layers, which have an architectural bias on
preserving spatial relationships, we use fully-connected lay-
ers in both the encoder and the decoder. This is important,
because such architectural conveniences are unavailable in
less-structured tasks, such as 3D pose prediction and SfM.
We train the model with a reconstruction loss on the de-
coder, and adversarial loss on the encoder.

The results are shown in Figure 1. While inpainting,
the encoder (incorrectly) transforms many of the digits into
other digits. For instance, several obscured “1” images are
inpainted as “4”. In the parametric decoding process, how-
ever, these errors areundone, and the original input is re-
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Figure 1. Digit inpainting using an encoder-decoder architecture
with fully-connected layers. Many predictions are incorrect, while
the recovered inputs are accurate. Orange squares highlight in-
stances of the digit “1” transformed into other digits; purple
squares highlight instances of the digit “2” transformed into other
digits.

covered successfully. In other words, the decoder takes the
burden of the reconstruction loss, allowing the encoder to
learn an inaccurate latent space. Parameter-free rendering
avoids this problem.

2. Additional experiments and details

In the sections to follow, we provide implementation de-
tails, including architecture descriptions for the generator
and discriminator in each task, and training details. Addi-
tionally, we provide more experimental results.

2.1. 3D human pose estimation from static images

Figure 2.1 shows the architecture of our generator net-
work for 3D human pose estimation from a single RGB im-
age. Our generator predicts weights over the shape bases� ,
rotationR; translationT and focal lengthf , as described
in our paper. The generator takes as input a set of 2D body
joint heatmaps. We use convolutional pose machines [3] to
estimate 2D keypoints, and convert them into heatmaps by
creating a Gaussian distribution centered around each 2D
keypoint. The network consists of 8 convolutional layers
with leaky ReLU activations and batch normalization and
two fully connected layers at the end that map to the de-
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Figure 2.Generators and discriminators' architectures for the
task of 3D human pose estimation from a single image.

sired outputs. The width, height and number of channels
for each layer is speci�ed in Figure 6. The discriminator
for this task consists of �ve fully connected layers with fea-
turemap depth 512, 512, 256, 256 and 1, with a leaky ReLU
and batch normalization after each layer. The discriminator
takes all values output from the generator (i.e., � , R; T , f )
as input.

In all experiments, we set the variance for the Gaussian
heatmap� to 0.25, and the dimensionality of our PCA shape
basis to 60 (out of 96 total bases). The dimensionality re-
duction is small, and indeed, we only use basis weights for
ease of prediction, relying on our adversarial priors (rather
than PCA) to regularize the 3D shape prediction. We use
gradient descent for both generator and discriminator train-
ing. Learning rate for reconstruction loss is set to 0.00001
and learning rate for the adversarial loss is set to 0.0001. All
parameters are initialized with random sampling from zero
mean normal distributions with variance of 0.02.

In Figure 3, we show predicted 3D human poses on im-
ages from the MPII dataset [1] using the ground-truth 2D
keypoints available. Our model generalizes wellon un-
seen images without any further self-supervised �netuning,
though we would expect additional self-supervised �netun-
ing to further improve performance.

2.2. Structure from Motion

Our generator networks for the task of structure from
motion is illustrated in Figure 2.1. It includes three
encoder-decoder convolutional networks with skip connec-
tions, which solve for optical �ow, depth, and camera mo-
tion. The egomotion network uses RGB, optical �ow and
an angle �eld as input, and estimates the camera motion in
SE(3). The depth network takes an RGB image as input and
predicts logdepth. The depth discriminator consists of four
convolution layers with batch normalization on the second
and the third layers, and leaky ReLU activation after each

Figure 3.Predicted 3D human poses in MPII dataset using the
supplied ground-truth 2D keypoints as input.
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Figure 4.Generator and discriminator architectures for
Structure from Motion. Dashed lines indicate skip
connections.

layer. The depth discriminator is fully convolutional as we
are interested in the realism of every depth patch, as op-
posed to the depthmap as a whole.

The egomotion discriminator is a 3-layer fully-connected
network that takesf R; T g matrices as input. The hidden
layers have 128, 128, and 64 neurons, respectively, with
batch normalization and a leaky ReLU after each layer.

Stabilizing training. In order to make sure that gener-
ators and discriminators progress together during training,
we update the generator only when the discriminator has
low enough loss. We add an updating heuristic such that if
the likelihood loss of the discriminator is above a threshold
� d; we do not update the generator. While discriminator is
strong enough (below this threshold) and the generator is
relatively weak (below a different threshold� g), we update
the generator twice in the iteration. In the experiments, we
set� d to 0.695 and� g to 0.75.
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Figure 5. AIGN ongender transformation (female to male, male to female)andage transformation (young to old).
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(a) Generator's and discriminator's architectures for
image super-resolution.
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Figure 6.Architectures for AIGN.

2.3. Image Super­Resolution

In Figure 6, we show the architecture of the generator
and discriminator for image super-resolution. The input im-
age is �rst passed through a convolutional layer with 64
channels, thenn “residual blocks”. Each residual block
consists of two convolutional layers, with a batch normal-
ization after each convolution layer and ReLU activation
after the �rst batch normalization. The output from the
last block is further passed to two deconvolution layers and
generates the �nal image. The discriminator for this task
consists of �ve convolution layers that use leaky ReLU ac-
tivations and batch normalization, and one fully-connected
layer that outputs one �nal value. In all experiments, we
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Figure 7. AIGN onage transformation (old to young).

use Adam optimizer with learning rate 0.0001.All parame-
ters are initialized with truncated normal distribution with
variance 0.02.

In Figures 8, 9 and 10, we compare our model with At-
tribute2Image [4] and with Unsupervised Image Translation
[2] for gender and age transformations. We use the code
provided by the authors for our comparisons. In Figures 5
and 7, we show additional results of our model on gender
and age transformation.

2.4. Inpainting

Figure 6 illustrates the architecture of our generator and
discriminator for image inpainting. The occluded input
image and the corresponding mask are separately passed
through two convolution layers, and then concatenated. The
concatenated outputs are then passed to three deconvolu-
tional layers to generate the inpainted image. The discrimi-
nator consists of four convolutional layers with leaky ReLU
and batch normalization layers, and one fully connected
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Figure 8. Comparison with Attribute2Image [4] and Unsupervised
Image to Image Translation [2] onGender transformation (fe-
male to male). Input to our model is a tight crop around the face,
tighter than the crop used by [4]. The proposed AIGN (Column 2)
provides more realistic results that better preserves the “identity”
of the subject while changing its gender, in comparison to previ-
ous work [4] (Column 4). We further show gender transformations
from the model of [2] (Columns 5,6) where as we see the identity
preservation is much weaker. Code is not available so we just paste
some results from their paper.
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Figure 9. Comparison of AIGN with Attribute2Image [4] ongen-
der transformation (male to female).

layer that outputs one �nal value. In all experiments, we use
the Adam optimizer, with a learning rate1e� 4All parame-
ters are initialized from the truncated Normal distribution,
with variance 0.02.

In Figure 11, we show additional results on biased in-
painting for making bigger lips.
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Figure 10. Comparison of AIGN with Attribute2Image [4] onage
transformation (left: young to old; right: old to young).
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Figure 11. Additional results of AIGN onbiased image inpaint-
ing (big lips).
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