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1. Parametric vs. non-parametric decoders

Here we discuss the benefits of using non-parametric and

domain-specific renderers, over learned decoders. Both the

proposed model and CycleGAN [5] can be viewed as au-

toencoders: the input is first transformed into a target do-

main, and then transformed back to its original space. A

parametric decoder could be more desirable, for the reason

that we do not need to hand-engineer a mapping function

from the target domain back to the inputs. However, sim-

ply using reconstruction loss and adversarial loss does not

guarantee that the predictions look spatially similar to the

inputs. In tasks such as image-to-image translation, spatial

precision can be of critical importance. With a parametric

decoder, the transformed input can be viewed as a infor-

mation bottleneck, and as long as the decoder can correctly

“guess” the final output from the transformed input (i.e., the

code), the code is valid and the solution is optimal.

To support this point, we conduct an experiment on im-

age inpainting using the MNIST dataset. Similar to the

parametric encoder-decoder described in the main text, the

network has two main parts: (1) an encoder that transforms

the input (a partially obscured image of a digit) into pre-

diction (a hallucinated digit), and (2) a decoder that trans-

forms the prediction back into the input. Instead of using

convolutional layers, which have an architectural bias on

preserving spatial relationships, we use fully-connected lay-

ers in both the encoder and the decoder. This is important,

because such architectural conveniences are unavailable in

less-structured tasks, such as 3D pose prediction and SfM.

We train the model with a reconstruction loss on the de-

coder, and adversarial loss on the encoder.

The results are shown in Figure 1. While inpainting,

the encoder (incorrectly) transforms many of the digits into

other digits. For instance, several obscured “1” images are

inpainted as “4”. In the parametric decoding process, how-

ever, these errors are undone, and the original input is re-
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Figure 1. Digit inpainting using an encoder-decoder architecture

with fully-connected layers. Many predictions are incorrect, while

the recovered inputs are accurate. Orange squares highlight in-

stances of the digit “1” transformed into other digits; purple

squares highlight instances of the digit “2” transformed into other

digits.

covered successfully. In other words, the decoder takes the

burden of the reconstruction loss, allowing the encoder to

learn an inaccurate latent space. Parameter-free rendering

avoids this problem.

2. Additional experiments and details

In the sections to follow, we provide implementation de-

tails, including architecture descriptions for the generator

and discriminator in each task, and training details. Addi-

tionally, we provide more experimental results.

2.1. 3D human pose estimation from static images

Figure 2.1 shows the architecture of our generator net-

work for 3D human pose estimation from a single RGB im-

age. Our generator predicts weights over the shape bases α,

rotation R, translation T and focal length f , as described

in our paper. The generator takes as input a set of 2D body

joint heatmaps. We use convolutional pose machines [3] to

estimate 2D keypoints, and convert them into heatmaps by

creating a Gaussian distribution centered around each 2D

keypoint. The network consists of 8 convolutional layers

with leaky ReLU activations and batch normalization and

two fully connected layers at the end that map to the de-
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Figure 2. Generators and discriminators’ architectures for the

task of 3D human pose estimation from a single image.

sired outputs. The width, height and number of channels

for each layer is specified in Figure 6. The discriminator

for this task consists of five fully connected layers with fea-

turemap depth 512, 512, 256, 256 and 1, with a leaky ReLU

and batch normalization after each layer. The discriminator

takes all values output from the generator (i.e., α, R, T , f )

as input.

In all experiments, we set the variance for the Gaussian

heatmap σ to 0.25, and the dimensionality of our PCA shape

basis to 60 (out of 96 total bases). The dimensionality re-

duction is small, and indeed, we only use basis weights for

ease of prediction, relying on our adversarial priors (rather

than PCA) to regularize the 3D shape prediction. We use

gradient descent for both generator and discriminator train-

ing. Learning rate for reconstruction loss is set to 0.00001

and learning rate for the adversarial loss is set to 0.0001. All

parameters are initialized with random sampling from zero

mean normal distributions with variance of 0.02.

In Figure 3, we show predicted 3D human poses on im-

ages from the MPII dataset [1] using the ground-truth 2D

keypoints available. Our model generalizes well on un-

seen images without any further self-supervised finetuning,

though we would expect additional self-supervised finetun-

ing to further improve performance.

2.2. Structure from Motion

Our generator networks for the task of structure from

motion is illustrated in Figure 2.1. It includes three

encoder-decoder convolutional networks with skip connec-

tions, which solve for optical flow, depth, and camera mo-

tion. The egomotion network uses RGB, optical flow and

an angle field as input, and estimates the camera motion in

SE(3). The depth network takes an RGB image as input and

predicts logdepth. The depth discriminator consists of four

convolution layers with batch normalization on the second

and the third layers, and leaky ReLU activation after each

Figure 3. Predicted 3D human poses in MPII dataset using the

supplied ground-truth 2D keypoints as input.
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Figure 4. Generator and discriminator architectures for

Structure from Motion. Dashed lines indicate skip

connections.

layer. The depth discriminator is fully convolutional as we

are interested in the realism of every depth patch, as op-

posed to the depthmap as a whole.

The egomotion discriminator is a 3-layer fully-connected

network that takes {R, T} matrices as input. The hidden

layers have 128, 128, and 64 neurons, respectively, with

batch normalization and a leaky ReLU after each layer.

Stabilizing training. In order to make sure that gener-

ators and discriminators progress together during training,

we update the generator only when the discriminator has

low enough loss. We add an updating heuristic such that if

the likelihood loss of the discriminator is above a threshold

θd, we do not update the generator. While discriminator is

strong enough (below this threshold) and the generator is

relatively weak (below a different threshold θg), we update

the generator twice in the iteration. In the experiments, we

set θd to 0.695 and θg to 0.75.
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Figure 5. AIGN on gender transformation (female to male, male to female) and age transformation (young to old).
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Figure 6. Architectures for AIGN.

2.3. Image SuperResolution

In Figure 6, we show the architecture of the generator

and discriminator for image super-resolution. The input im-

age is first passed through a convolutional layer with 64

channels, then n “residual blocks”. Each residual block

consists of two convolutional layers, with a batch normal-

ization after each convolution layer and ReLU activation

after the first batch normalization. The output from the

last block is further passed to two deconvolution layers and

generates the final image. The discriminator for this task

consists of five convolution layers that use leaky ReLU ac-

tivations and batch normalization, and one fully-connected

layer that outputs one final value. In all experiments, we

original  

image 

low 

resolution 
output 

original  

image 

low 

resolution 
output 

Figure 7. AIGN on age transformation (old to young).

use Adam optimizer with learning rate 0.0001.All parame-

ters are initialized with truncated normal distribution with

variance 0.02.

In Figures 8, 9 and 10, we compare our model with At-

tribute2Image [4] and with Unsupervised Image Translation

[2] for gender and age transformations. We use the code

provided by the authors for our comparisons. In Figures 5

and 7, we show additional results of our model on gender

and age transformation.

2.4. Inpainting

Figure 6 illustrates the architecture of our generator and

discriminator for image inpainting. The occluded input

image and the corresponding mask are separately passed

through two convolution layers, and then concatenated. The

concatenated outputs are then passed to three deconvolu-

tional layers to generate the inpainted image. The discrimi-

nator consists of four convolutional layers with leaky ReLU

and batch normalization layers, and one fully connected
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Figure 8. Comparison with Attribute2Image [4] and Unsupervised

Image to Image Translation [2] on Gender transformation (fe-

male to male). Input to our model is a tight crop around the face,

tighter than the crop used by [4]. The proposed AIGN (Column 2)

provides more realistic results that better preserves the “identity”

of the subject while changing its gender, in comparison to previ-

ous work [4] (Column 4). We further show gender transformations

from the model of [2] (Columns 5,6) where as we see the identity

preservation is much weaker. Code is not available so we just paste

some results from their paper.
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Figure 9. Comparison of AIGN with Attribute2Image [4] on gen-

der transformation (male to female).

layer that outputs one final value. In all experiments, we use

the Adam optimizer, with a learning rate 1e−4All parame-

ters are initialized from the truncated Normal distribution,

with variance 0.02.

In Figure 11, we show additional results on biased in-

painting for making bigger lips.
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Figure 10. Comparison of AIGN with Attribute2Image [4] on age

transformation (left: young to old; right: old to young).
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Figure 11. Additional results of AIGN on biased image inpaint-

ing (big lips).
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