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1. Outline of supplementary material
We will give a detailed running time analysis of our proposed algorithm in Section 2. Then we will give the proof to

Lemma 4 and Theorem 10 in Section 3 and Section 4 respectively. Generalization of the efficient discriminative criterion
check subroutine will be described in Section 5. More implementation details will be given in Section 6. Finally, we will
provide more experimental data in Section 7, including visualization results, experimental results on a typical parameter setup,
more investigation on parameters sensitivity, the role of worst case bound in practice and preliminary results on multilabel
MRFs.

2. Running time analysis

Algorithm 1: MRF inference with pre-processing

Input: Energy function E(x)
1 x̂← ∅; S ← ∅;
2 for t← 1 to τ do
3 for i ∈ V \S, ` ∈ Li do
4 Compute LB ≤

∑
zN(i)∈L̂N(i)(xi=`)

q(zN (i));

5 if LB ≥ κ then
6 x̂← x̂⊕ {xi = `};
7 Li ← {`}; S ← S ∪ {i};
8 end
9 end

10 end
11 With x̂S fixed, use one MRF inference algorithm to solve the remaining variables, get x̂V \S ;
12 return x̂ = x̂S ⊕ x̂V \S ;

The pseudo-code of our proposed algorithm is listed in Algorithm 1. It’s the same pseudo-code we have in the main paper.
We will give a asymptotic analysis on the running time of our pre-processing algorithm here. Assuming we have an oracle

to give us data term θi(xi) and prior term value θij(xi, xj) in O(1) time. Let N = |V |,M = |E| and L = maxi |Li| to be
the number of variables, edges and maximum possible labels, d = maxi |N (i)| is the maximum degree of the graph. For
a typical vision problem, we usually have a sparse graph like grid, meaning O(N) = O(M) and d is also usually a small
constant like 4 or 8.

Computation time of the for loop from line 2 to 10 needs some thinking. τ is usually a small constant, so we can
omit it in the asymptotic analysis. For the given xi = `, a naive implementation of brute force algorithm to compute∑
zN(i)∈L̂N(i)

q(zN (i)) needs to enumerate all the possible neighboring configurations zN (i), and it takes O(dL) to compute

minyi 6=xi ∆E(yi ← xi | zN (i)), so it takes O(dLd+1) time. Therefore, the overall running time is O(dNLd+2) for brute
force so it’s still feasible when both d and L are small constant.
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When we use the approximated way to compute the lower bound using Lemma 5 in the main paper, we need an faster
way to compute Eq. 9. We can pre-compute all the terms we may used here in O(NL+ EL2) time globally and then query
it in O(d) time without solving the min operator each time. Then it takes O(d2L) time to compute Aj , O(dL) time to
compute Qi and O(d) to compute the sum each iteration. Also note that once we fix a variable, it also takes O(L + dL2)
to update our pre-computations result. But each variable will only be fixed at most once during the pre-processing, so the
amortized running time to update the pre-computations result isO(NL+EL2). So in sum, we have the overall running time
O(d2NL2 + EL2) for approximated calculation.

3. Proof of Lemma 4
Lemma 4. For the same set of decision problems for persistency, we will never increase the number of false positives by
increasing κ.

Proof. This one is trivial. Consider any non-persistent xS , it will be a false positive with parameter κ2 if and only if it
meets our discriminative criterion, i.e.,

∑
zN(S)∈L̂N(S)

q(zN (S)) ≥ κ2. Now for the algorithm using parameter κ2 > κ1, our
discriminative criterion still holds, hence it’s still a false positive for our algorithm with parameter κ1.

4. Proof of Theorem 10
Theorem 10. Suppose we use expansion movess as the inference algorithm, with the β-multiplicative bound, then we will
have E(x̂) ≤ β · E(x∗) + |S|ε.

Proof. Following the proof of the multiplicative bound of expansion moves algorithm [1] (Theorem 6.1), we will see actually
the multiplicative factor β will not be applied to unary terms. In other words, E′(x̂) =

∑
i θ
′
i(x̂i) +

∑
ij θ
′
ij(x̂i, x̂j) ≤∑

i θ
′
i(x
∗
i ) + β

∑
ij θ
′
ij(x

∗
i , x
∗
j ) ≤ βE′(x∗).

Note that in our algorithm, the energy functionE′(x) of expansion moves is induced by fixing x̂S inE(x), all the pairwise
terms θij crossing S and V \S could be viewed as the unary terms in E′(x) since one variable will be fixed. Therefore, we
will have following.

E(x̂S ⊕ x̂V \S)

=
∑
i∈S

θi(x̂i) +
∑

i,j∈S,(i,j)∈E

θij(x̂i, x̂j) +
∑

i∈S,j∈V \S,(i,j)∈E

θij(x̂i, x̂j) +
∑
i∈V \S

θi(x̂i) +
∑

i,j∈V \S,(i,j)∈E

θij(x̂i, x̂j)

≤
∑
i∈S

θi(x̂i) +
∑

i,j∈S,(i,j)∈E

θij(x̂i, x̂j) +
∑

i∈S,j∈V \S,(i,j)∈E

θij(x̂i, x
∗
j ) +

∑
i∈V \S

θi(x
∗
i ) + β

∑
i,j∈V \S,(i,j)∈E

θij(x
∗
i , x
∗
j )

≤
∑
i∈S

θi(x
∗
i ) +

∑
i,j∈S,(i,j)∈E

θij(x
∗
i , x
∗
j ) +

∑
i∈S,j∈V \S,(i,j)∈E

θij(x
∗
i , x
∗
j ) +

∑
i∈V \S

θi(x
∗
i ) + β

∑
i,j∈V \S,(i,j)∈E

θij(x
∗
i , x
∗
j ) + |S|ε

≤β · E(x∗) + |S|ε.

(1)

5. Generalization of the efficient check of discriminative criterion
When we want to decide if the given partial labeling xS is persistent or not, we can follow exactly the same idea presented

in Section 3.3 of the main paper to compute the lower bound of
∑
zN(S)∈L̂N(S)

q(zN (S)). The only big difference is that we
need a subroutine to efficiently check minyS 6=xS

∆E(yS ← xS | zN (S)) > 0 for zN (S) ∈ LN (S) with zj = `. Persistency re-
laxation (PR) [11] generalizes dead end elimination (DEE) [2] from checking persistency of a single variable xi to an indepen-
dent local minimum (ILM) partial labeling xS . The subproblem in PR is to decide if minyS 6=xS

∆E(yS ← xS | zN (S)) > 0
for zN (S) ∈ LN (S), without the additional constraint that zj = `, and they proposed a bunch of sufficient conditions to
efficiently check it. Actually, it’s trivial to enforce the additional constraint zj = ` in those approaches. We just need to
remove zj from the free variables and force it takes value ` in the subroutine proposed in PR. Note that those subroutines are
sound so we can still apply Lemma 5 to partial labeling xS and get the lower bound of

∑
zN(S)∈L̂N(S)

q(zN (S)). Once we
have our discriminative criterion as the decision subroutine, we can follow the construction algorithm in PR (Algorithm 2) as
the generalization of our proposed construction algorithm in the main paper.



(a) Reference image (b) α-expansion at 25s (E = 2731940.0000) (c) α-expansion (E = 1343617.0000)

(d) Ground truth (e) Ours at 25s (E = 1418450.0000) (f) Ours (E = 1391959.0000)

Figure 1: Stereo instance Teddy

6. More implementation details
Since we applied the proposed method to each induced binary subproblem in the expansion moves algorithm, we only

check persistency for xi = 0 (i.e., do not take move in the binary case) after the first epoch of running expansion moves
algorithm in order to get the maximum speedup. We observed that after the first epoch, most of the variables won’t change
its value, hence the extra benefit from checking persistent for xi = 1 is very marginal.

7. Additional experimental results
7.1. Visualization results

We presented the visualization results on the stereo task in Fig. 1. We can see there is no significant visual difference
between the expansion moves results and our results, even in the case that our method has slightly higher energy. Therefore,
it’s appealing to apply our method in practice, since it has almost the same visual quality but makes the inference much faster.
When we set up a limited time budget in real applications, see the second column of Fig. 1, our approach can generate much
better visual result than regular expansion moves algorithm without pre-processing. In this case, regular expansion moves
even doesn’t finish its first epoch and has a very poor disparity map.

7.2. Experimental results with a typical parameter setup

Our experiments suggest that the proposed method can achieve good performance with the parameters in a wide range.
We report the experimental results in Table 1 with the following fixed parameters to avoid the expense of cross-validation:
κ = 0.8, τ = 3, using the uniform distribution for q(x) and checking with our efficient subroutine described in Section 3.3
of the main paper.

Even though this is a fairly conservative assumption (we use the exact same parameters for very different energy functions),
we still obtain good results. We acheive a 2x-12x speedup on different datasets with the energy increasing 0.1% on the worst



Table 1: Performance of our method on a typical parameter setup

Typical parameter setup (w/o cross validation)
Dataset Stereo Inpainting Denoising-sq Denoising-ts Optical Flow Color-seg-n4 Color-seg-n8
Speedup 2.14x 2.10x 11.71x 10.61x 8.92x 9.31x 8.45x

Energy Change -0.04% -0.53% -0.03% -0.09% +0.11% +0.01% +0.05%
Labeled Vars 56.77% 47.06% 97.39% 96.64% 93.74% 90.80% 90.43%

Precision 99.71% 99.88% 99.95% 99.95% 99.50% 99.50% 99.76%
Leave one out parameter selection (w/ cross validation)

Dataset Stereo Inpainting Denoising-sq Denoising-ts Optical Flow Color-seg-n4 Color-seg-n8
Speedup 1.78x 3.40x 11.83x 11.91x 4.69x 7.02x 8.33x

Energy Change -0.06% -1.71% -0.02% 0.00% -0.04% 0.00% +0.04%
Labeled Vars 44.76% 74.29% 97.91% 98.32% 77.25% 85.74% 90.39%

Precision 99.74% 96.16% 99.95% 99.79% 99.88% 99.79% 99.77%

Table 2: Parameters chosen from the leave-one-out procedure

Dataset κ Choice of q criterion check Exception
Stereo 0.8 uniform approximate none

Inpainting 0.7 uniform approximate 1 instance with unary distribution
Denoise-sq 0.8 uniform approximate 1 instance with κ = 0.9
Denoise-ts 0.7 uniform approximate 1 instance with κ = 0.8

Optical Flow 0.9 unary exact 1 instance with κ = 0.8, approximate check
Color-seg-n4 0.9 unary exact 1 instance with κ = 0.8, uniform distribution, approximate check
Color-seg-n8 0.9 unary exact 1 instance with κ = 0.8

case. In addition, we still get lower energy on 4 of the 5 challenging dataset.
We also listed the performance of our method with the parameters selected with the leave-one-out cross validation pro-

cedure as a reference (shown in Table 2 in the main paper). We see that the performance of our method is very similar no
matter whether we use fixed parameters or use cross validation to choose the parameters. The key observation of the main
paper still holds even with this fixed typical parameter setup, i.e., our method achieves significant speedup against baseline
methods with very minor compromise on the accuracy of the partial optical labelings (usually lose < 0.5% precision). We
also achieve comparable or smaller energy even though we compromise the accuracy of the partial optical labelings in the
pre-processing step.

Therefore, these experiments demonstrate that it’s sufficient to use the typical parameter setup of our method in practice.
We can achieve very good performance without using the expensive cross validation parameter selection procedure.

7.3. Investigation on parameter sensitivity

We claimed in the main paper that the parameters chosen by the leave-one-out procedure are very similar for the same
dataset. We summarized the parameters chosen by cross validation in Table 2. The exception column shows that, out of the 7
datasets we tested, the leave-one-out procedure only results in 5 cases where the parameters are different from the majority of
the dataset. We also observed that the exception instance achieves good performance when applied to the majority parameter
setup of the whole dataset. Therefore, we conclude the best parameter suit for one dataset is quite stable, and the parameters
chosen from a set of energy can still be applicable to other energy functions derived from the same vision task.

In addition, we also observed that the proposed method achieves good performance across all the datasets we tested when
the parameters are chosen from a wide range, including the typical parameter setup we reported in Section 7.2. Therefore,
the proposed method is robust to its parameters.

7.4. Experimental results for worst case bounds

In the main paper, we set ε =∞ to investigate how our algorithm performs without the worst case bound. We demonstrated
that our algorithm can achieve very good performance in practice without it. Now we will study the role of ε in practice.

We conducted experiments on Color-seg-n4 dataset as an example. The experimental results are summarized in Table 3.



Table 3: Experimental results with different ε on Color-seg-n4 dataset

κ = 0.8 κ = 0.6
ε Speedup Energy Change Labeled Vars Precision Speedup Energy Change Labeled Vars Precision
0 4.16x 0.00% 37.82% 100.00% 4.16x 0.00% 37.82% 100.00%

0.01 4.31 0.00% 67.73% 99.99% 4.46x 0.00% 68.25% 99.97%
0.1 6.05x 0.00% 72.07% 99.93% 6.47x +0.01% 73.69% 99.70%
0.2 6.68x 0.00% 74.67% 99.86% 7.93x +0.20% 78.32% 99.34%
0.3 6.97x 0.00% 76.32% 99.81% 8.38x +0.34% 81.43% 99.12%
0.4 7.07x 0.00% 77.86% 99.80% 9.62x +1.29% 85.91% 98.68%
0.5 7.59x 0.00% 81.16% 99.74% 11.73x +3.01% 88.41% 97.59%
1.0 7.92x +0.01% 88.48% 99.69% 12.38x +6.88% 96.25% 96.51%
10.0 8.12x +0.01% 90.80% 99.50% 15.02x +7.83% 98.52% 94.77%

We firstly applied the typical parameter setup we used in Section 7.2. The results are reported on the left part of Table 3.
Note that ε = 0 is the special case where our method only uses the sound condition to check the partial optimal labeling, hence
the proposed algorithm degenerates to the DEE algorithm. Therefore, in this special case, we have a 100% precision and label
around 38% variables, hence we get a moderate speedup without affecting the energy. We also know that ε = ∞ is another
special case where we don’t try to bound the worst case. These results is reported in the main paper and Table 1. We already
know that the fixed parameters we choose here are reasonable, so even in this extreme case, we still get good performance
without the theoretical guarantee. As ε decreases, we know that the criterion used becomes more strict. Therefore we will
have higher precision and less labeled variables. Due to that, we label fewer variables, and the speedup we acheive decreases.
In this setup, since we always maintain the precision value at a extremely high level, ε’s impact on energy change is not that
obvious.

To test this, we conducted the experiments under another set of purposely bad parameters, i.e., changed κ = 0.6. We
summarized our results on the right part of Table 3. We see that with κ = 0.6 and large ε value (e.g., ε = 10), our criterion
is loose enough to hurt the precision and result in 8% higher energy than before. In our experiments, we observed that as ε
decreases from 10 down to 0, the precision increases dramatically and the energy increment becomes smaller. Therefore, ε
values not only give us the theoretical worst case guarantee, but also make real impact in practice (make the criterion we used
close to the sound condition and makes the energy smaller).

7.5. Comparison to other MRF inference algorithm

The main focus of this paper is to demonstrate that the proposed decision criterion is efficient and effective in finding
a partial optimal labeling of MRFs. We achieve a very good tradeoff between the running time and the final energy by
employing our proposed method as the pre-processing for the expansion moves algorithm.

Demonstrating that expansion moves is a state-of-the-art MRF inference algorithm is not the main goal of this paper. The
comparison among different inference algorithms are provided in survey papers [4, 10]. However, for the completeness of the
paper, we still perform the experiments comparing against other widely used MRF inference algorithms besides expansion
movess, including loopy belief propagation (LBP) [7, 12], dual decomposition (DD) [5], TRWS [6] and MPLP [3, 8, 9].

The experimental results are reported in Table 4. We set the time budget for the baseline methods as the 10x of the running
time used by expansion moves. In our experiments, expansion movess are usually significantly faster than other methods,
and results in comparable or even better energy. This observation is consistent with the survey papers [4, 10]. We can see that
LBP, DD, and MPLP usually will get higher energy compared to expansion moves even with 10x of time budget. TRWS is
promising since it can provide (slightly) lower energy than expansion moves, although it’s much slower. On the datasets we
tested, TRWS will spend 3-10x longer time to get energy comparable to our proposed method, through its final energy might
be slightly smaller. Typical energy-time curves are presented in Fig. 2. We can see that LBP, DD, TRWS are usually much
slower than our method with comparable converging energy.

7.6. Experimental results for multilabel MRFs

In the main paper, we mainly focused on applying the proposed pre-processing technique to each induced binary sub-
problem from the expansion moves algorithm. We can also apply the proposed pre-processing technique to the multilabel



Table 4: Additional experimental results (TO: time out, MEM: out of memory)

Dataset Measurement Ours DEE PR IRI LBP DD TRWS MPLP
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Stereo Speedup 1.78x 1.06x 1.13x 0.51x 0.17x 0.10x 0.10x MEM
12–20 labels Energy Change -0.06% 0.00% 0.00% -0.15% +86.55% +92.25% -0.63% MEM
Trunc. L1/L2 Labeled Vars 44.76% 10.07% 18.06% 56.45% - - - MEM
Inpainting Speedup 3.40x 1.28x 1.32x 0.12x 0.10x 0.10x 0.10x MEM
256 labels Energy Change -1.71% 0.00% 0.00% 0.00% +25.94% +51.39% -9.71% MEM
Trunc. L2 Labeled Vars 74.29% 21.05% 23.75% 0.36% - - - MEM

Denoising-sq Speedup 12.76x 1.15x 1.33x 0.29x 0.10x 0.09x 0.10x MEM
256 labels Energy Change -0.02% 0.00% 0.00% 0.00% -0.65% +17.14% -0.65% MEM

L2 Labeled Vars 97.93% 17.42% 33.71% 0.39% - - - MEM
Denoising-ts Speedup 13.08x 11.97x 11.86x 0.18x 0.10x 0.09x 0.10x MEM

256 labels Energy Change 0.00% 0.00% 0.00% -0.03% -0.78% +13.29% -0.99% MEM
Trunc. L2 Labeled Vars 98.22% 95.54% 97.71% 5.85% - - - MEM

Optical Flow Speedup 4.69x 2.63 3.40x TO 0.10x 0.09x 0.10x MEM
225 labels Energy Change -0.04% 0.00% 0.00% TO +9.63% +16.07% -0.58% MEM

L1 Labeled Vars 77.25% 54.34% 65.51% TO - - - MEM
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|) Color-seg-n4 Speedup 7.02x 4.55x 6.34x 3.67x 0.14x 0.10x 0.36x 0.10x

4–12 labels Energy Change 0.00% 0.00% 0.00% -0.12% +1.72% +3.17% -0.13% +0.25%
Potts Labeled Vars 85.74% 65.38% 77.50% 98.44% - - - -

Color-seg-n8 Speedup 8.33x 5.61x 6.37x 1.45x 0.10x 0.10x 0.12x 0.10x
4–12 labels Energy Change +0.04% 0.00% 0.00% -0.10% +0.39% +4.49% -0.11% +0.22%

Potts Labeled Vars 90.39% 71.62% 82.05% 99.35% - - - -
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Figure 2: More speed-energy curve for denoise-sq dataset

MRFs directly. We give preliminary results in Table 5. Since the multilabel MRFs are NP-hard, it’s very challenging to
get the ground truth persistent labeling for each variable. Therefore, we don’t report the precision/recall values. We just
use the energy change as an indirect measurement to evaluate the quality of the persistent labeling we found. We also re-
ported the percentage of labeled variables. Both metrics are computed in the per-dataset fashion. We set our distribution
qi(xi) = e−θi(xi), which is only from the unary terms and used the fast approximation subroutine to check our discrimina-
tive criterion. Then we vary the κ value in {0.6, 0.7, 0.8, 0.9}. We can see from Table 5 that the proposed method labels
significantly more variables than the baseline method DEE, while increases the energy by a couple of percents. It’s still the
case that the proposed method can achieve a better tradeoff between the number of labeled variables and the energy we can
get for the multilabel MRFs. In practice, it’s more effective to apply our proposed method to each induced binary subproblem.
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