Efficient Low Rank Tensor Ring Completion Supplementary Material

Wenqi Wang, Vaneet Aggarwal Purdue University, West Lafayette, IN

{wang2041, vaneet } @purdue.edu

Shuchin Aeron Tufts University, Medford, MA

shuchin@ece.tufts.edu

1. Supplementary Material

1.1. Proof of Lemma 1

Proof. Based on definition of tensor permutation in Definition 6, on the left hand side, the $(j_1,, j_n)$ entry of the tensor is

$$\mathcal{X}^{P_i}(j_1, ..., j_n) = \mathcal{X}(j_{n-i+2}, ..., j_n, j_1, ..., j_{n-i+1}).$$
 (1)

On the right hand side, the $(j_1,, j_n)$ entry of the tensor gives

$$f(\mathcal{U}_{i}\cdots\mathcal{U}_{i-1})(j_{1},\cdots,j_{n})$$
=Trace(\mathcal{U}_{i}(:,j_{1},:)\mathcal{U}_{i+1}(:,j_{2},:)...\mathcal{U}_{n}(:,j_{n-i+1},:) \quad (2)
\mathcal{U}_{1}(:,j_{n-i+2},:)\cdots\mathcal{U}_{i-1}(:,j_{n},1)).

Since trace is invariant under cyclic permutations, we have

$$\operatorname{Trace}(\mathcal{U}_{i}(:,j_{1},:)\mathcal{U}_{i+1}(:,j_{2},:)...\mathcal{U}_{n}(:,j_{n-i+1},:) \\ \mathcal{U}_{1}(:,j_{n-i+2},:)\cdots\mathcal{U}_{i-1}(:,j_{n},:)) \\ = \operatorname{Trace}(\mathcal{U}_{1}(:,j_{n-i+2},:)\cdots\mathcal{U}_{i-1}(:,j_{n},:) \\ \mathcal{U}_{i}(:,j_{1},:)\mathcal{U}_{i+1}(:,j_{2},:)...\mathcal{U}_{n}(:,j_{n-i+1},:)) \\ = f(\mathcal{U}_{1}\cdots\mathcal{U}_{n})(j_{n-i+2},\cdots,j_{n},j_{1},\cdots,j_{n-i+1}),$$
(3)

which equals to the right hand side of equation (1). Since any entries in \mathfrak{X}^{P_i} are the same as those in $\mathfrak{U}_i\mathfrak{U}_{i+1}\cdots\mathfrak{U}_n\mathfrak{U}_1\cdots\mathfrak{U}_{i-1}$, the claim is proved.

1.2. Proof of Lemma 2

Proof. First we note that tensor permutation does not change tensor Frobenius norm as all the entries remain the same as those before the permutation. In Lemma 2, we have

$$\mathcal{U}_{i} = \operatorname{argmin}_{\mathcal{Y}} \| \mathcal{P}_{\Omega} \circ f(\mathcal{U}_{1} \cdots \mathcal{U}_{i-1} \mathcal{Y} \mathcal{U}_{i+1} \cdots \mathcal{U}_{n}) - \mathcal{X}_{\Omega}) \|_{F}^{2}.$$

$$\tag{4}$$

Since the permutation operation does not change the Frobenius norm, equivalently we have

$$\mathcal{U}_{i} = \operatorname{argmin}_{\mathcal{Y}} \|\mathcal{P}_{\Omega}^{P_{i}} \circ (f(\mathcal{U}_{1} \cdots \mathcal{U}_{i-1} \mathcal{Y} \mathcal{U}_{i+1} \cdots \mathcal{U}_{n}))^{P_{i}} - \mathcal{X}_{\Omega}^{P_{i}} \|_{F}^{2}. \tag{5}$$

Based on Lemma 1, we have

$$(f(\mathcal{U}_1 \cdots \mathcal{U}_{i-1} \mathcal{Y} \mathcal{U}_{i+1} \cdots \mathcal{U}_n))^{P_i} = f(\mathcal{Y} \mathcal{U}_{i+1} \cdots \mathcal{U}_n \mathcal{U}_1 \cdots \mathcal{U}_{i-1}),$$
(6)

thus equation (5) becomes

$$\mathcal{U}_{i} = \operatorname{argmin}_{\mathcal{Y}} \| \mathcal{P}_{\Omega}^{P_{i}} \circ f(\mathcal{Y}\mathcal{U}_{i+1} \cdots \mathcal{U}_{n}\mathcal{U}_{1} \cdots \mathcal{U}_{i-1}) - \mathcal{X}_{\Omega}^{P_{i}} \|_{F}^{2}. \tag{7}$$

Thus we prove our claim.