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Preface. In this supplemental material we derive update equations for the mean-field inference in Eq. (13) and show a
proof for the solution of the Bayesian risk minimization in Eq. (8). We give further implementation details of ProbClassicA
and ProbFlowFields, and present an analysis considering different design choices. Finally, we evaluate the performance of
additional uncertainty measures and apply, for completeness, ProbFlowFields on the Middlebury benchmark [2].

A. Mean-field Update Equations

In the following, we show how to derive the mean-field update equations for ProbClassicA. Update equations for ProbFlow-
Fields can be obtained similarly.

Notation. Note that strictly speaking the latent variables are given as h = (h71ij=l)w,ij withy € {D,S1,...,Sp,Ny,...,Ng},
p=15(4,4)|, ¢ = |N(4, )| as we have separate latent variables for all penalty functions. In the following, we therefore use
the notation hg,, hy, and fs_(-), fn,(-) fore € S(i,7) and e € N (i, j), respectively. The flow vector of the correspond-
ing neighboring pixel is denoted as y.. Moreover, GSM parameters m; and o; differ for data, smoothness, and non-local
potentials. For better readability, we drop indices D, S, and N that explicitly distinguish between the different GSMs.

Variational objective. As shown in Eq. (13), variational parameters 0 are determined to minimize the Kullback-Leibler
divergence between posterior p and its approximating distribution g, i.e.

0" = argeminDKL (¢(y,y.1;0) | p(y, ¥, 0| 1)) (22a)
= argemin Eq(y,y,h;g) [log Q(ya yv h; 0)} - Eq(y,y,h;e) [log p(y7 5’, h | I)} . (22b)
@, entropy term @

Recall that we defined the variational distribution ¢ in Eq. (11) as
q(y,)ﬁh; 0) = H [q (Yi]7 ylj7 Hq ~,i5 :| (23)
,J

Then, the entropy term in @ can be split up as follows:

E (yyhe)[logq(y ¥y, b 0)] Eq(y,5.n:0) [Zlogq Yijs )+210gq(yij§0)+ZZIOgQ(hV,ij§0)] (24a)
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Using the well-known entropy of a Gaussian and a multinomial distribution, we obtain
Eq(y.9.1:0) [log q(y,y,h;0) } = —— Z log det ij) Z log det —l— Z Z Z ki1 log k451 + const.

(25)



In order to evaluate the term @ in Eq. (22b), it is necessary to compute

logp(y,y,h|I)
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where we have defined fc(yij,¥i;) = |lyij — ¥ijll2. We now take the expectation over h and simplify the remaining

expectations as
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To solve the expectation value w.r.t. the linearized brightness constancy in ®, we define a = I (z + u?j, Jj+ v?j) =1 (i,5)
andb = Valy (i +u;, j + v?j)T. Then we have that

o0 (1857, Zigi 1) = Byiyi0) o (viss 1)’ (28a)
2

=Eqy.;50) [(a +bT (Yij - yioj)) } (28b)

= Ey(y0 | +2ab" (i = y35) + (v = ¥85) (0B") (vi; = )] (28¢)

= a? 4+ 2ab" (p; — %) + (ps; — v%) (BB (1 — ¥%) + Tr(bb'E, ). (28d)

We solve the expectation value gs, in @ for an exemplary function fs, (yi s ye) = U;j — Ue. All remaining terms as well as

the terms gy, in ® can be resolved in the same manner. Using A; = <(1) 8), it holds that

9s. (Bijs Zijs e, Be) = Eqiye0) fs. (yij»ve)” (29a)
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=Eqy.0) [(“z’j —ye) Ar(py - ye) + Tr(Alzij)] (29¢)
= (1 — 1) A (g — ) + Tr(AL D) + Tr(AL2) (29d)
= (WD i) (), + (2, (29¢)
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with p; j) denoting the first (i.e., horizontal) component of the mean flow vector at pixel (¢, 7). The term gc in ® can be
determined as

ge(ti2 Bij iy Bij) = Eqy i) fo (g 515)” (302)

= Eytyor0) Eotsoo| (i = 513) (i3 = ¥5) | (30b)

= Eq(:;50) [(“ij ~ i) (hi; = 933) + Tr(Eij)] (30¢c)

= (tij — frij) " (i — i) + Tr(Sij) + Te(2y5). (30d)

Update equations. To obtain update equations, we compute the derivative of the KL divergence in Eq. (22b), set it to zero,
and solve for the desired variable. Please note that update equations for boundary pixels may slightly differ from the ones
shown below. From now on, spatial derivatives of I are denoted as I, and I, the temporal derivative is given as I;. Moreover,

diag(-) represents a diagonal matrix and we define vectors K., = (Zl %) .
l 17

As the update of each mean flow estimate p,; depends on other entries of , it is desirable to jointly solve for all compo-
nents of the flow field. Therefore, p is obtained as the solution of a linear equation system, c.f. [50, 37], such that

(1) 1 @ @ \"
Ax =b, x:(un,...,unm,uu,...,unm), A=Ap+As+Ac, b=bp+bg+be. 31)

The components of the linear equation system are determined as

B diag (Kp) diag (I2)  diag (Kp) diag (I, - 1))
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AC = 2)\(;1, (32C)
. B diag KD) diag (I - I;)1 _ . N



Here, F; and F; represent filter matrices corresponding to the derivative filters H; = [1, —1]T and Hy = [1, —1], which
are used in fs, (yij, ¥e), c.f. [37]. Lis the identity matrix and O is a matrix of all zeros.

When updating the auxiliary flow means [, a 5 X 5 neighborhood has to be considered. Therefore, a joint update of all
estimates is computationally expensive and we follow [43] assuming fixed values for neighboring pixels, i.e.

. (k) - (k)
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Here, N*(i, j) represents the set of neighbors in terms of the k™ optical flow component.
For the flow variances X = <201 X(]) ) we derive a closed-form update dependent only on the latent variables k with
2

-1
Y= ()\D diag (I2) - Kp + s [abs(F]) - Ks, +abs(F}) - Ks,| + 2)\(;) (34a)

-1
and 3, = (Apdiag (12) - Kp + As [abs(FY) - K, +abs(F}) - Ks,] +2\c) (34b)

where the absolute value function abs(+) is applied element-wise.
We assume fixed neighboring values also for the update of the auxiliary flow variances X, and obtain

2(1) 0 (k) 1
ij = ( ot &(2) | it = : (35)
0 Zij,t ! 2Ac + AN ZeeN’v(i,j) (KNéc)ij,tfl
To derive an update equation for a latent variable k., ;;, we need to consider a Lagrangian function including the KL
divergence in Eq. (22b) as well as the constraint ), k., ;;; = 1. Solving the resulting linear equation system analytically
gives us, e.g.,
>\D .
m 9o (/J'ija i )
kpiji = <0l> exp l)\D%‘IQ - Zpij (36a)
L Ap . -1
. _ iy gp (l"’ija Eija )
with Zpij = (; (01) exp [AD%‘? (36b)

for the latent variables of the data term using the expectation values gp ( Hijs Xij; ) as derived in Eq. (28d). Update equations
for the remaining latent variables are derived similarly.

B. Bayesian Risk Minimization

We aim to show that the solution of the Bayesian risk minimization in Eq. (8) is given as y;; = p;; when replacing the
posterior p with its approximating distribution ¢ and using the Average End-Point Error (AEPE) as a loss function.
Recall that the AEPE is defined as [ (y,¥) = >, ; £ (¥ij, ¥ij) = D_i; 1¥ij — ¥isll2 with

Val(a—x,%x)=(a—x—%)/||la—x—X%|2 (37a)
=-(x—(a=x))/[[x—(a—x%)|2 (37b)
=—-Val(x,a—X) (37¢)

for arbitrary a € R2. W.1.0.g. we minimize the expected risk of /(y,y) and therefore set f(y) = Eq(y.5.n:0) [[(y,¥)]. Note
that we omit the variational parameters 6 in the following for brevity. Using the properties of ¢, we obtain
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For fixed y;; € R, the function ¢(yi;) - £ (yij, ¥ij) is convex in y;;. Therefore, the objective f(y) is convex in y and the
Bayesian risk minimization has a unique solution given by

Yij = argmin fij (57”) 39)
Yij

It only remains to be shown that V3 fi;(¥:;) = 0 holds for y;; = p,;. Setting §;; = p,;; we obtain
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C. Implementation Details

In this section, we present our design choices following the best-practices of energy-based optical flow techniques, and
give an analysis evaluating the influence of the specifics. Moreover, we give details of our post-processing approach using
the fast bilateral solver [4].

C.1. ProbClassicA

In our ProbClassicA algorithm, we perform three steps of graduated non-convexity and apply coarse-to-fine estimation
with 10 warping steps per layer. As in [43], we restrict the flow update to an absolute value of 1 and pre-process the images
using a structure-texture decomposition. Spline-based cubic interpolation as well as an averaging of image gradients Vol
and V315 are applied. During the inference, the variable sets {u, 3, k} and {;L 53, 1A<} are updated in an alternating way. As
an inner update step, we apply five iterations of the block-coordinate descent scheme on g, ¥ and k. For the set {ﬂ, s, R}
a number of three inner updates performs better.

C.2. ProbFlowFields

For ProbFlowFields, we follow [36] and pre-smooth images using a Gaussian kernel of size 9 x 9 with 0 = 1.1. For
warping, we apply bilinear interpolation and averaged image derivatives. Moreover, we perform five warping steps, each
with five iterations of our block-coordinate descent scheme. We follow Revaud et al. and compute optical flow updates with
30 iterations of successive over relaxation, which performs noticeably faster than the solver used in [43].

C.3. Evaluation of design choices

Table 6 summarizes results of AEPE, AUC, and CC on the Middlebury and Sintel benchmarks using varying setups of
ProbClassicA and ProbFlowFields. In a first step, we evaluate a setting for ProbClassicA in which parameters A\p, Ag, and Ay
are determined by having the Bayesian optimization [42] consider only the AEPE or only the AUC instead of the F;-score



ProbClassicA Middlebury AEPE rel. chg. AUC rel. chg. CC rel. chg.

Baseline 0.296 - 0.466 - 0.374 -
Bayesian optim. w.r.t. AEPE only 0.290 -0.02 0.471 0.01 0.351 0.06
Bayesian optim. w.r.t. AUC only 0.312 0.05 0.436 -0.06 0.451 -0.21
Ex=Ec=0 0.411 0.39 0.889 0.91 0.125 0.67
No structure-texture decomposition 0.290 -0.02 0.445 -0.05 0.361 0.03
ProbFlowFields Sintel validation AEPE rel. chg. AUC rel. chg. CC rel. chg.
Baseline 3.127 - 0.398 - 0.563 -
Bayesian optim. w.r.t. AEPE only 3.128 <0.01 0.475 0.19 0.407 0.28
Bayesian optim. w.r.t. AUC only 3.219 0.03 0.381 -0.04 0.644 -0.14
Spatially constant \s 3.127 0.00 0.400 <0.01 0.562 <0.01
0 =1 3.125 >-0.01 0.396 >-0.01 0.548 0.03
No gradient averaging 3.135 <0.01 0.398 0.00 0.557 0.01
No Gaussian smoothing 3.135 <0.01 0.441 0.11 0.497 0.12
10 warping steps 3.123 >-0.01 0.421 0.06 0.538 0.04

Table 6. Analysis of several design choices for ProbClassicA on Middlebury and ProbFlowFields on the Sintel validation set. Bold entries
denote strong deviations from the baseline.

proposed in Eq. (20). In both cases, we observe that the performance w.r.t. the evaluation metric that is not considered during
the Bayesian optimization drops significantly. This highlights the importance of the F;-score to balance the accuracy of
flow and uncertainty estimates. Moreover, we show that the AEPE as well as the performance of the uncertainty measure is
clearly inferior if no additional nonlocal term is applied (Ey = Ec = 0). When using ProbClassicA without structure-texture
decomposition as pre-processing, we surprisingly obtain improved results for the AEPE (2%) as well as the AUC (5%). This
is in contrast to energy minimization, where this pre-processing helps [43]. For fairness of comparison to the underlying
energy minimization approach, we continue to use a structure-texture decomposition.

Considering ProbFlowFields, we observe the same behavior as for ProbClassicA when Bayesian optimization is carried
out only with respect to one of the evaluation metrics. Note that the parameter setting obtained by a Bayesian optimization
w.r.t. to the AEPE performs better than the baseline on the training set even though no improvement of the AEPE is visible
on the validation set. The usage of a spatially constant trade-off parameter \g, turning off the normalization of the spatial
derivatives (07; = 1, c.f. Egs. (17) and (18)), and not averaging the image gradients, respectively, only lead to minor changes.
When no Gaussian smoothing is applied for image pre-processing, a clear effect on the AUC as well as the CC can be
observed whereas the AEPE is only slightly changed. Finally, the application of 10 warping steps only results in small
improvements of the AEPE and even decreases the performance of the uncertainty measure. This justifies the usage of a
reduced number of 5 steps to save computational time.

C.4. Post-processing using the fast bilateral solver

As described in Sec. 7.3, we apply the fast bilateral solver [4] on top of ProbFlowFields in order to illustrate the benefits of
uncertainty predictions for a further improvement of the flow estimates. In doing so, we normalize the estimated uncertainties
with a sigmoid function and invert the values to obtain the confidences required by the fast bilateral solver. A Bayesian
optimization [42] is performed on our Sintel training set to obtain appropriate sigmoid parameters as well as a suitable
trade-off parameter for the fast bilateral solver. See Fig. 5 for a screenshot of the private Sintel benchmark table showing
results after post-processing (ProbFlowFields + BS). For the reported baseline, we process the estimates of ProbFlowFields
assuming a uniform confidence of 0.5.

D. Additional Uncertainty Measures

In the following, we evaluate several additional uncertainty measures on the Middlebury as well as the Sintel benchmark.
HauBecker and Spies [20] introduce three confidence measures based on the spatio-temporal structure tensor

S =G(6) * [(V3I)(Vs])T] with V3l = (I, 1,,1;)", (42)

where I, and I, denote the spatial image derivatives computed with central differences and I; is the temporal difference
between I and I5. Following [30], we smooth the derivatives with a Gaussian filter G(&) of size 7 X 7 and a standard



EPE all EPE matched EPE unmatched d0-10 di0-60 d60-140 s0-10 s10-40 s40+

GroundTruth (1] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DCFlow 2! 5.119 2.283 28.228 4.665 2.108 1.440 1.052 3.434 29.351
FlowFieldsCNN 3] 5.383 2.303 30.313 4.718 2.020 1.399 1.032 3.065 32.422
MR-Flow (4] 5.376 2.818 26.235 5.109 2.395 1.755 0.908 3.443 32.221
FTFlow I 5.380 2.268 30.841 4.513 1.964 1.366 1.046 3.322 31.936
S2F-IF B 5.417 2.549 28.795 4.745 2.198 1.712 1.157 3.468 31.262
InterpoNet_ff [ 5.535 2.372 31.296 4.720 2.018 1.532 1.064 3.496 32,633
RegionalFF (€ 5.562 2.505 29.741 4.921 2.393 1.639 1.122 3.477 32,625
PGM-C [ 5.591 2.672 29.389 4.975 2.340 1.791 1.057 3.421 33.339
RicFlow ['0] 5.620 2.785 28.907 5.146 2.366 1.679 1.088 3.364 33.573
InterpoMet_cpm (] 5.627 2.504 30.344 4.975 2.213 1.640 1.042 3.575 33.321
ProbFlowFields+BS 12 5.628 2.543 30.773 4.680 2.169 1.683 1.086 3538 33.210
CPM_AUG ['? 5.645 2.737 29.362 4.707 2,150 1.918 1.087 3.306 33.925
ProbFlowFields ' 5.696 2.545 31.371 4.696 2.150 1.686 1.146 3.658 33.188

Figure 5. Screenshot of private Sintel table (final) showing results for ProbFlowFields and ProbFlowFields + BS (status as of July 2017).

Uncertainty measure ~ AUC rel. chg. CC rel. chg.  Uncertainty measure AUC  rel. chg. CC rel. chg.
Ct [20] 1.058 1.27 -0.106 1.28 Ct [20] 1.130 1.84 -0.128 1.23
Cs [20] 1.014 1.18 -0.057 1.15 Cs [20] 1.154 1.90 -0.149 1.26
Cc [20] 0.967 1.08 -0.022 1.06 Cc [20] 0.915 1.30 0.129 0.77
Ev3 [27] 0.989 1.12 0.058 0.84 Ev3 [27] 1.024 1.57 -0.030 1.05
Noise 0.512 0.10 0.286 0.24 Noise 0.512 0.29 0.382 0.32
ProbClassicA (ours)  0.466 0.00 0.374 0.00 ProbFlowFields (ours) 0.398 0.00 0.563 0.00
Oracle 0.255 - 1.000 - Oracle 0.182 - 1.000 -

Table 7. Area under curve (AUC), Spearman’s rank correlation co- Table 8. Area under curve (AUC), Spearman’s rank correlation co-
efficient (CC), and relative change (rel. chg.) in comparison to the efficient (CC), and relative change (rel. chg.) in comparison to our
our uncertainty measure on the Middlebury dataset. uncertainty measure on a Sintel benchmark validation set.

deviation 6 = 2. In [20], eigenvalues A1, A2, and A3 of S are computed such that A\; > Ay > A3. Uncertainty measures are
then obtained as

A=Az A= A2\
Vo= — ——= Ues=— —— |, d U = Ve — Vgs. 43
ct (/\1 +)\3> ; c T an Ce ct c (43)
Moreover, we evaluate a baseline uncertainty measure as used in [27] defined as Wg,3 = —As.

Finally, we compare to a sampling-based measure similar to the idea of Kybic and Nieuwenhuis [27]. That is, we estimate
the uncertainty as the variance of the optical flow estimates resulting from small, random perturbations of the input data.
Specifically, we apply zero-mean Gaussian noise on the input images and determine appropriate values for the variance of
the noise on the training set. The uncertainty measure is then obtained as Unoise = \/02 + 02 with o, and o, denoting the
standard derivation of the horizontal and vertical flow estimates per pixel.

As can be seen in Tables 7 and 8, all measures based on the structure tensor perform considerably worse than our proposed
uncertainty measure. W¢. and Wgy3 lead to more meaningful uncertainties than the two remaining approaches on both
datasets, but perform similar to the simple gradient-based measure [3]. The noise uncertainty — especially on the Middlebury
dataset — performs comparably to Wgpergy and Wy camed. However, our ProbFlow approach clearly leads to superior results.

E. ProbFlowFields on Middlebury

For completeness, we report the results of ProbFlowFields on Middlebury. To reproduce the Middlebury results shown
in [1] we applied the default settings of the EpicFlow interpolation. Moreover, we use GSM potentials trained on the Sintel



training test Uncertainty measure AUC  rel. chg. CC rel. chg.

Method AEPE rel.chg. AEPE rel. chg. Gradient [3] 1.244 1.72 -0.077 1.21
Initialization 0307 038 B B Laplace 0.539 0.18 0.297 0.20
. + Energy [8] 0.563 0.23 0.253 0.32
FlowFields [1] 0.240 0.08 0.331 0.10
FieldsFields* 0230 004 _ Learned [30] 0.473 0.04 0.374 >-0.01
’ ’ ProbFlowFields (ours) 0.457 0.00 0.371 0.00

ProbFlowFields (ours)  0.222 0.00 0.301 0.00 Oracle 0.247 - 1.000 -

Table 9. Average end-point error (AEPE) and relative change (rel.
chg.) in comparison to the ProbFlowFields method on the Middle-
bury benchmark. TPlease note that we did not re-evaluate Flow-
Fields, but show the publicly available results.

Table 10. Area under curve (AUC), Spearman’s rank correlation
coefficient (CC), and relative change (rel. chg.) in comparison to
the energy uncertainty measure on the Middlebury training set.

Average Army Mequon Schefflera Wooden Grove Urban Yosemite Teddy
endpoint (Hidden texture) (Hidden texture) (Hidden texture) (Hidden texture) i (Synthetic) (Stereo)
error avg. GT im0 im1 GT im0 im1 GT im0 imi GT im0 imi GT im0 im1 GT im0 imi GT im0 imi GT im0 im1

rank | all  disc untext| all disc untext| all disc untext| all disc untext| all disc untext untext| all  disc untext| all  disc untext
NNF-Local [87] 34 | 0071 0.202 0.051 | 0.152 0514 0.125| 0.182 0.372 0.142 | 0.102 0.495 0.062 | 0411 0.611 0.212 0.192 | 0.106 0.1212 0.1713| 0.342 0.806 0.232
PMMST [114] 9.3 |0.0932 0.215 0.0716|0.1811 0.514 0.1628| 0.21s 0.428 0.1716| 0.102 0.331 0.0813| 0.515 0.744 0.287 0.205 | 0.1118 0.1212 0.1713| 0.374 0.742 0.354
OFLAF [77] 9.8 | 0.089 0.215 0.066 | 0.166 0.536 0.125 | 0.193 0.372 0.142 | 0.14s 0.7729 0.075 | 0.515 0.787 0.254 | 0.3111 0.764 0.2516|0.1118 0.1212 0.2140|0.4210 0.784 0.63 18
MDP-Flow2 [68] 106 | 0.08s 0.215 0.0716| 0.152 0.481 0.111 | 0.205 0.405 0.142 |0.1522 0.8037 0.0813|0.6319 0.9319 0.4320| 0.265 0.764 0.239 |0.1118 0.1212 0.1713| 0.386 0.795 0.446
NN-field [71] 11.8 | 0.089 0.2217 0.051 | 0.178 0.5510 0.1311| 0.193 0.394 0.157 | 0.091 0.484 0.051 | 0.411 0.611 0.201 |0.5260 0.641 0.2619|0.1342 0.133s 0.2034| 0.353 0.83s 0.211
C usion [96] | 13.9| 0.071 0.215 0.051 | 0.166 0.5510 0.125 | 0.205 0.443 0.157 | 0.114 0.659 0.062 | 0.7135 1.0740 0.5837|0.3215 1.0627 0.2822| 0.1118 0.1336 0.158 | 0.413 0.8813 0.543

TC/T-Flow [76] 195] 007+ 0215 0.051 |0.1918 0.6834 0.125 | 0.2826 0.6631 0.142 | 0.149 0.8647 0.075 | 0.6729 0.9829 0.4931| 0.221 0.829 0.192 |0.1118 0.112 0.3085| 0.5027 1.0230 0.64 20
'WLIF-Flow [93] 19.8| 0.089 0.215 0.066 | 0.1811 0.5510 0.1523|0.2518 0.5620 0.1716| 0.149 0.6810 0.08 13| 0.6116 0.9117 0.4118|0.4335 0.9615 0.2928|0.1342 0.1212 0.2140| 0.5132 1.0333 0.7238

NNF-EAC [103] 21.3|0.0932 0.2217 0.0716| 0.178 0.586 0.1311|0.2311 0.4912 0.157 | 0.1636 0.8037 0.0928|0.6013 0.8913 0.4016|0.3825 0.786 0.2822|0.1231 0.1212 0.1826|0.5745 1.2449 0.6932
Layers++ [37] 21.9| 0.089 0.215 0.0716|0.1918 0.5613 0.1735| 0.205 0.405 0.1827| 0.138 0.587 0.075 | 0.483 0.703 0.339 | 0.4747 1.0119 0.3347|0.1565 0.1458 0.2453|0.4617 0.8813 0.7238

LME [70] 229| 0083 0.2217 0.066 | 0.152 0.492 0.111 |0.3035 0.6426 0.3189|0.1522 0.7833 0.0928| 0.6625 0.9624 0.5337|0.3316 1.1844 0.2822|0.1231 0.1212 0.1826 | 0.4412 0.91 16 0.61 14
IROF++ [58] 23.0| 0.083 0.2324 0.0716|0.2132 0.6834 0.1735|0.2826 0.6324 0.1939|0.1522 0.7322 0.0928| 0.6013 0.8913 0.4219|0.4335 1.0830 0.3137| 0.106 0.1212 0.124 | 0.4719 0.9823 0.6831
nLayers [57] 23.8| 0071 0.191 0.066 |0.2240 0.5916 0.1957|0.2518 0.5416 0.2048|0.1522 0.8443 0.0813| 0.537 0.787 0.3411|0.4439 0.8410 0.3033|0.1342 0.1336 0.2034 | 0.4719 0.9722 0.67 29
HAST [109] 251|0.071 0.202 0.051 |0.1811 0.54s 0.1311| 0.171 0.321 0.121 |0.1522 0.90s58 0.062 | 0.494 0.744 0.223 |0.5870 1.0931 0.4470|0.199 0.1787 0.47114| 0.321 0.641 0.333
PH-Flow [101] 25.8| 0.083 0.2431 0.0716|0.2132 0.6834 0.1735| 0.2311 0.4912 0.1939|0.1636 0.8341 0.0928| 0.563 0.839 0.3813| 0.30s 0.817 0.2414|0.1565 0.133s 0.3085| 0.4311 0.853 0.6627

FC-2Layers-FF [74] 25.8| 0.08s 0.215 0.0716|0.2132 0.7042 0.1735| 0.205 0.405 0.1827|0.1522 0.7628 0.0813| 0.537 0.776 0.3712|0.4953 1.0220 0.3347|0.1676 0.1336 0.2980| 0.4412 0.87 12 0.64 20
Correlation Flow [75] | 26.5 | 0.0932 0.2324 0.07 16| 0.178 0.5815 0.111 | 0.4365 0.9967 0.157 | 0.114 0.473 0.0813|0.7541 1.0841 0.5642|0.4131 0.9213 0.3033|0.1452 0.1336 0.2769| 0.408 0.859 0.425

AGIF+OF [85] 28.0| 0.089 0.2217 0.0716|0.2355 0.7347 0.1847|0.2826 0.6631 0.1827| 0.149 0.7013 0.0813|0.5710 0.8510 0.3813|0.4747 0.9716 0.3137|0.1842 0.1336 0.2245|0.5132 0.9926 0.74 47
RNLOD-Flow [121] 28.0| 0.071+ 0.202 0.066 |0.1918 0.6834 0.1311|0.3349 0.7950 0.17 16| 0.149 0.7322 0.075 | 0.6933 1.0333 0.4827|0.3724 0.9917 0.2928 | 0.1676 0.1679 0.2980| 0.4514 0.8813 0.6525
ProbFlowFields [128] | 28.8 | 0.1047 0.3173 0.0844|0.1918 0.6323 0.1735|0.2722 0.6324 0.2259| 0.114 0.495 0.075 | 0.8251 1.2256 0.5945| 0.254 1.0526 0.216 | 0.094 0.1212 0.1713| 0.5847 1.3351 0.6216

DeepFlow [86] 65.9|0.1279 0.3173 0.1191|0.2881 0.8272 0.2282|0.4471 1.0068 0.3390|0.2686 1.3496 0.1581|0.8149 1.2153 0.5844|0.3825 1.5578 0.2516| 0.1118 0.112 0.2453| 0.9391 1.8293 1.1289
ProbClassicA [127] 66.5|0.1047 0.2854 0.0844 | 0.2240 0.7861 0.1628 | 0.5788 1.1784 0.2259|0.2172 1.2486 0.1156 | 0.8658 1.3072 0.6352 | 0.5565 1.7493 0.3766|0.1676 0.1458 0.3499 | 0.8182 1.7485 0.9371
74 3¢ 0.87 0.1 5¢

TriangleFlow [30] 66.7 | 0.1159 0.2962 0.0965|0.2673 0.9588 0.1735|0.4774 1.0772 0.1827|0.1636 0.8751 0.0928| 1.07 97 1.47 104 1.1098 | 0.87 86 1.3965 0.57 87 565 0.19 109 0.2352 | 0.6355 1.3351 0.84 61

4
5¢

©

Figure 6. Screenshot of private Middlebury table showing results for ProbFlowFields and ProbClassicA (status as of July 2017).

dataset for our ProbFlowFields approach. The results evaluating the AEPE on the Middlebury benchmark can be found in
Table 9. We outperform the original FlowFields approach on training and test and obtain improved results in comparison to
FlowFields*. Please note that the Middlebury benchmark policy allows no more than one entry per method in the public table.
Therefore, we decided to show the results of ProbFlowFields on the Middlebury website whereas the results of ProbClassicA
from Table 1 of the main paper are only visible in a private table, see Fig. 6 for a screenshot.

Table 10 shows an evaluation of different uncertainty measures. In contrast to our remaining experiments, the Laplace and
learned uncertainty measures both outperform the energy-based approach. Our uncertainty measure is slightly outperformed
by Uieamed W-I.t. the CC metric. However, ProbFlowFields shows clearly superior results considering the AUC.
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