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Preface. In this supplemental material we derive update equations for the mean-field inference in Eq. (13) and show a
proof for the solution of the Bayesian risk minimization in Eq. (8). We give further implementation details of ProbClassicA
and ProbFlowFields, and present an analysis considering different design choices. Finally, we evaluate the performance of
additional uncertainty measures and apply, for completeness, ProbFlowFields on the Middlebury benchmark [2].

A. Mean-field Update Equations
In the following, we show how to derive the mean-field update equations for ProbClassicA. Update equations for ProbFlow-

Fields can be obtained similarly.

Notation. Note that strictly speaking the latent variables are given as h = (hγ,ij,l)γ,ij with γ ∈ {D,S1, . . . ,Sp,N1, . . . ,Nq},
p = |S(i, j)|, q = |N(i, j)| as we have separate latent variables for all penalty functions. In the following, we therefore use
the notation hSe , hNe and fSe(·), fNe(·) for e ∈ S(i, j) and e ∈ N(i, j), respectively. The flow vector of the correspond-
ing neighboring pixel is denoted as ye. Moreover, GSM parameters πl and σl differ for data, smoothness, and non-local
potentials. For better readability, we drop indices D, S, and N that explicitly distinguish between the different GSMs.

Variational objective. As shown in Eq. (13), variational parameters θ? are determined to minimize the Kullback-Leibler
divergence between posterior p and its approximating distribution q, i.e.

θ? = arg min
θ

DKL

(
q(y, ŷ,h;θ) | p(y, ŷ,h | I)

)
(22a)

= arg min
θ

Eq(y,ŷ,h;θ)
[

log q(y, ŷ,h;θ)
]︸ ︷︷ ︸

¬, entropy term

−Eq(y,ŷ,h;θ)
[

log p(y, ŷ,h | I)
]︸ ︷︷ ︸

­

. (22b)

Recall that we defined the variational distribution q in Eq. (11) as

q(y, ŷ,h;θ) =
∏
i,j

[
q (yij ;θ) · q (ŷij ;θ) ·

∏
γ

q (hγ,ij ;θ)
]
. (23)

Then, the entropy term in ¬ can be split up as follows:

Eq(y,ŷ,h;θ)
[

log q(y, ŷ,h;θ)
]

= Eq(y,ŷ,h;θ)

[∑
i,j

log q (yij ;θ) +
∑
i,j

log q (ŷij ;θ) +
∑
i,j

∑
γ

log q (hγ,ij ;θ)

]
(24a)

=
∑
i,j

Eq(yij ;θ) log q (yij ;θ) +
∑
i,j

Eq(ŷij ;θ) log q (ŷij ;θ) +
∑
i,j

∑
γ

Eq(hγ,ij ;θ) log q (hγ,ij ;θ) . (24b)

Using the well-known entropy of a Gaussian and a multinomial distribution, we obtain

Eq(y,ŷ,h;θ)
[

log q(y, ŷ,h;θ)
]

= −1

2

∑
i,j

log
(

det(Σij)
)
− 1

2

∑
i,j

log
(

det(Σ̂ij)
)

+
∑
i,j

∑
γ

∑
l

kγ,ij,l log kγ,ij,l + const.

(25)



In order to evaluate the term ­ in Eq. (22b), it is necessary to compute

log p(y, ŷ,h | I)

= log

 1

Z

∏
i,j

[∏
l

π
hD,ij,l
l N

(
fD
(
yij ; I

)
; 0, σ2

l

)hD,ij,l

]λD

·
∏

e∈S(i,j)

[∏
l

π
hSe,ij,l
l N

(
fSe

(
yij ,ye

)
; 0, σ2

l

)hSe,ij,l

]λS

· exp

[
− fC

(
yij , ŷij

)2]λC

·
∏

e∈N(i,j)

[∏
l

π
hNe,ij,l
l N

(
fNe

(
ŷij , ŷe

)
; 0, σ2

l

)hNe,ij,l

]λN
 (26a)

=
∑
i,j

λD

∑
l

hD,ij,l

(
log πl + logN

(
fD
(
yij ; I

)
; 0, σ2

l

))
+ λS

∑
e∈S(i,j)

∑
l

hSe,ij,l

(
log πl + logN

(
fSe

(
yij ,ye

)
; 0, σ2

l

))

− λC fC
(
yij , ŷij

)2
+ λN

∑
e∈N(i,j)

∑
l

hNe,ij,l

(
log πl + logN

(
fNe

(
ŷij , ŷe

)
; 0, σ2

l

))− logZ (26b)

=
∑
i,j

λD

∑
l

hD,ij,l

(
log πl − log σl −

fD
(
yij ; I

)2
2σ2

l

)
+ λS

∑
e∈S(i,j)

∑
l

hSe,ij,l

(
log πl − log σl −

fSe

(
yij ,ye

)2
2σ2

l

)

− λC fC
(
yij , ŷij

)2
+ λN

∑
e∈N(i,j)

∑
l

hNe,ij,l

(
log πl − log σl −

fNe

(
ŷij , ŷe

)2
2σ2

l

)+ const, (26c)

where we have defined fC
(
yij , ŷij

)
= ‖yij − ŷij‖2. We now take the expectation over h and simplify the remaining

expectations as

Eq(y,ŷ,h;θ) log p(y, ŷ,h | I)

= Eq(y,ŷ;θ)
∑
i,j

λD

∑
l

kD,ij,l

(
log πl − log σl −

fD(yij ; I)2

2σ2
l

)

+ λS

∑
e∈S(i,j)

∑
l

kSe,ij,l

(
log πl − log σl −

fSe

(
yij ,ye

)2
2σ2

l

)

− λC fC
(
yij , ŷij

)2
+ λN

∑
e∈N(i,j)

∑
l

kNe,ij,l

(
log πl − log σl −

fNe

(
ŷij , ŷe

)2
2σ2

l

)+ const (27a)

=
∑
i,j

λD

∑
l

kD,ij,l

(
log πl − log σl

)
+ λS

∑
e∈S(i,j)

∑
l

kSe,ij,l

(
log πl − log σl

)

+ λN

∑
e∈N(i,j)

∑
l

kNe,ij,l

(
log πl − log σl

)
−
∑
i,j

λD

∑
l

kD,ij,l

2σ2
l

Eq(y;θ) fD
(
yij ; I

)2︸ ︷︷ ︸
®, gD

+λS

∑
e∈S(i,j)

∑
l

kSe,ij,l

2σ2
l

Eq(y;θ) fSe

(
yij ,ye

)2︸ ︷︷ ︸
¯, gSe

+ λC Eq(y,ŷ;θ) fC
(
yij , ŷij

)2︸ ︷︷ ︸
°, gC

+λN

∑
e∈N(i,j)

∑
l

kNe,ij,l

2σ2
l

Eq(ŷ;θ) fNe

(
ŷij , ŷe

)2︸ ︷︷ ︸
±, gNe

+ const. (27b)



To solve the expectation value w.r.t. the linearized brightness constancy in ®, we define a = I2
(
i+ u0ij , j + v0ij

)
−I1 (i, j)

and b = ∇2I2
(
i+ u0ij , j + v0ij

)T
. Then we have that

gD
(
µij ,Σij ; I

)
= Eq(y;θ) fD

(
yij ; I

)2
(28a)

= Eq(yij ;θ)
[(
a+ bT(yij − y0

ij

))2]
(28b)

= Eq(yij ;θ)
[
a2 + 2abT(yij − y0

ij

)
+
(
yij − y0

ij

)T(
bbT)(yij − y0

ij

)]
(28c)

= a2 + 2abT(µij − y0
ij

)
+
(
µij − y0

ij

)T(
bbT)(µij − y0

ij

)
+ Tr

(
bbTΣi,j

)
. (28d)

We solve the expectation value gSe in ¯ for an exemplary function fSe

(
yij ,ye

)
= uij − ue. All remaining terms as well as

the terms gNe in ± can be resolved in the same manner. Using A1 =

(
1 0
0 0

)
, it holds that

gSe

(
µij ,Σij ,µe,Σe

)
= Eq(y;θ) fSe

(
yij ,ye

)2
(29a)

= Eq(ye;θ) Eq(yij ;θ)
[(

yij − ye
)T

A1

(
yij − ye

)]
(29b)

= Eq(ye;θ)
[(
µij − ye

)T
A1

(
µij − ye

)
+ Tr

(
A1Σij

)]
(29c)

=
(
µij − µe

)T
A1

(
µij − µe

)
+ Tr

(
A1Σij

)
+ Tr

(
A1Σe

)
(29d)

=
(
µ
(1)
ij − µ

(1)
e

)2
+
(
Σij

)
1,1

+
(
Σe

)
1,1

(29e)

with µ(1)
ij denoting the first (i.e., horizontal) component of the mean flow vector at pixel (i, j). The term gC in ° can be

determined as

gC
(
µij ,Σij , µ̂ij , Σ̂ij

)
= Eq(y,ŷ;θ) fC

(
yij , ŷij

)2
(30a)

= Eq(yij ;θ) Eq(ŷij ;θ)
[(

yij − ŷij
)T(

yij − ŷij
)]

(30b)

= Eq(ŷij ;θ)
[(
µij − ŷij

)T(
µij − ŷij

)
+ Tr

(
Σij

)]
(30c)

=
(
µij − µ̂ij

)T(
µij − µ̂ij

)
+ Tr

(
Σij

)
+ Tr

(
Σ̂ij

)
. (30d)

Update equations. To obtain update equations, we compute the derivative of the KL divergence in Eq. (22b), set it to zero,
and solve for the desired variable. Please note that update equations for boundary pixels may slightly differ from the ones
shown below. From now on, spatial derivatives of I are denoted as Ix and Iy , the temporal derivative is given as It. Moreover,

diag(·) represents a diagonal matrix and we define vectors Kγ =
(∑

l
kγ,ij,l
σ2
l

)
ij

.

As the update of each mean flow estimate µij depends on other entries of µ, it is desirable to jointly solve for all compo-
nents of the flow field. Therefore, µ is obtained as the solution of a linear equation system, c.f . [50, 37], such that

Ax = b, x =
(
µ
(1)
11 , . . . , µ

(1)
nm, µ

(2)
11 , . . . , µ

(2)
nm

)T
, A = AD + AS + AC, b = bD + bS + bC. (31)

The components of the linear equation system are determined as

AD = λD

(
diag

(
KD
)

diag
(
I2x
)

diag
(
KD
)

diag
(
Ix · Iy

)
diag

(
KD
)

diag
(
Ix · Iy

)
diag

(
KD
)

diag
(
I2y
) )

, (32a)

AS = λS

(
FT

1 diag
(
KS1

)
F1 + FT

2 diag
(
KS2

)
F2 0

0 FT
1 diag

(
KS3

)
F1 + FT

2 diag
(
KS4

)
F2

)
, (32b)

AC = 2λCI, (32c)

bD = ADy0 − λD

(
diag

(
KD
)

diag
(
Ix · It

)
1

diag
(
KD
)

diag
(
Iy · It

)
1

)
, bS = 0, bC = 2λCµ̂. (32d)



Here, F1 and F2 represent filter matrices corresponding to the derivative filters H1 =
[
1,−1

]T
and H2 =

[
1,−1

]
, which

are used in fSe

(
yij ,ye

)
, c.f . [37]. I is the identity matrix and 0 is a matrix of all zeros.

When updating the auxiliary flow means µ̂, a 5 × 5 neighborhood has to be considered. Therefore, a joint update of all
estimates is computationally expensive and we follow [43] assuming fixed values for neighboring pixels, i.e.

µ̂ij,t =

(
µ̂
(1)
ij,t

µ̂
(2)
ij,t

)
, µ̂

(k)
ij,t =

2λC µ
(k)
ij + λN

∑
e∈Nk(i,j)

(
KNke

)
ij,t−1 · µ̂

(k)
e,t−1

2λC + λN
∑
e∈Nk(i,j)

(
KNke

)
ij,t−1

. (33)

Here, Nk(i, j) represents the set of neighbors in terms of the kth optical flow component.

For the flow variances Σ =

(
Σ1 0
0 Σ2

)
we derive a closed-form update dependent only on the latent variables k with

Σ1 =
(
λD diag

(
I2x
)
·KD + λS

[
abs
(
FT

1

)
·KS1

+ abs
(
FT

2

)
·KS2

]
+ 2λC

)−1
(34a)

and Σ2 =
(
λD diag

(
I2y
)
·KD + λS

[
abs
(
FT

1

)
·KS3 + abs

(
FT

2

)
·KS4

]
+ 2λC

)−1
, (34b)

where the absolute value function abs(·) is applied element-wise.
We assume fixed neighboring values also for the update of the auxiliary flow variances Σ̂, and obtain

Σ̂ij,t =

(
Σ̂

(1)
ij,t 0

0 Σ̂
(2)
ij,t

)
, Σ̂

(k)
ij,t =

1

2λC + λN
∑
e∈Nk(i,j)

(
KNke

)
ij,t−1

. (35)

To derive an update equation for a latent variable kγ,ij , we need to consider a Lagrangian function including the KL
divergence in Eq. (22b) as well as the constraint

∑
l kγ,ij,l = 1. Solving the resulting linear equation system analytically

gives us, e.g.,

kD,ij,l =

(
πl
σl

)λD

exp

[
−λD

gD
(
µij ,Σij ; I

)
2σ2

l

]
· ZD,ij (36a)

with ZD,ij =

(
L∑
l=1

(
πl
σl

)λD

exp

[
−λD

gD
(
µij ,Σij ; I

)
2σ2

l

])−1
(36b)

for the latent variables of the data term using the expectation values gD
(
µij ,Σij ; I

)
as derived in Eq. (28d). Update equations

for the remaining latent variables are derived similarly.

B. Bayesian Risk Minimization
We aim to show that the solution of the Bayesian risk minimization in Eq. (8) is given as y?ij = µij when replacing the

posterior p with its approximating distribution q and using the Average End-Point Error (AEPE) as a loss function.
Recall that the AEPE is defined as l (y, ỹ) =

∑
i,j ` (yij , ỹij) =

∑
i,j ‖yij − ỹij‖2 with

∇2 ` (a− x, x̃) = (a− x− x̃) /‖a− x− x̃‖2 (37a)
= − (x− (a− x̃)) /‖x− (a− x̃) ‖2 (37b)
= −∇2 ` (x,a− x̃) (37c)

for arbitrary a ∈ R2. W.l.o.g. we minimize the expected risk of l(y, ỹ) and therefore set f(ỹ) = Eq(y,ŷ,h;θ) [l(y, ỹ)]. Note
that we omit the variational parameters θ in the following for brevity. Using the properties of q, we obtain

f(ỹ) =

∫
Y

∫
Ŷ

∑
H
q(y, ŷ,h) · l (y, ỹ) dy dŷ (38a)

q fac.
=

∫
Y
q(y) · l (y, ỹ) dy (38b)

=
∑
i,j

∫
R2

q(yij) · ` (yij , ỹij) dyij︸ ︷︷ ︸
=:fij(ỹij)

. (38c)



For fixed yij ∈ R2, the function q(yij) · ` (yij , ỹij) is convex in ỹij . Therefore, the objective f(ỹ) is convex in ỹ and the
Bayesian risk minimization has a unique solution given by

yij = arg min
ỹij

fij(ỹij). (39)

It only remains to be shown that∇2 fij(ỹij) = 0 holds for ỹij = µij . Setting ỹij = µij we obtain∫ µij

−∞
q(τ ) · ∇2 `

(
τ ,µij

)
dτ

(z1=τ−µij)
=

∫ 0

−∞
q(µij + z1) · ∇2 `

(
µij + z1,µij

)
dz1 (40a)

q sym.
=

∫ 0

−∞
q(µij − z1) · ∇2 `

(
µij + z1,µij

)
dz1 (40b)

(z2=µij−z1)
=

∫ ∞
µij

q(z2) · ∇2 `
(
2µij − z2,µij

)
dz2 (40c)

(37a)−(37c)
= −

∫ ∞
µij

q(z2) · ∇2 `
(
z2,µij

)
dz2 (40d)

and finally

∇2 fij
(
µij
)

=

∫
R2

q(τ ) · ∇2 `
(
τ ,µij

)
dτ (41a)

=

∫ µij

−∞
q(τ ) · ∇2 `

(
τ ,µij

)
dτ +

∫ ∞
µij

q(τ ) · ∇2 `
(
τ ,µij

)
dτ

(40d)
= −

∫ ∞
µij

q(τ ) · ∇2 `
(
τ ,µij

)
dτ +

∫ ∞
µij

q(τ ) · ∇2 `
(
τ ,µij

)
dτ (41b)

= 0. (41c)

C. Implementation Details
In this section, we present our design choices following the best-practices of energy-based optical flow techniques, and

give an analysis evaluating the influence of the specifics. Moreover, we give details of our post-processing approach using
the fast bilateral solver [4].

C.1. ProbClassicA

In our ProbClassicA algorithm, we perform three steps of graduated non-convexity and apply coarse-to-fine estimation
with 10 warping steps per layer. As in [43], we restrict the flow update to an absolute value of 1 and pre-process the images
using a structure-texture decomposition. Spline-based cubic interpolation as well as an averaging of image gradients ∇2I1
and∇2I2 are applied. During the inference, the variable sets {µ,Σ,k} and

{
µ̂, Σ̂, k̂

}
are updated in an alternating way. As

an inner update step, we apply five iterations of the block-coordinate descent scheme on µ, Σ and k. For the set
{
µ̂, Σ̂, k̂

}
,

a number of three inner updates performs better.

C.2. ProbFlowFields

For ProbFlowFields, we follow [36] and pre-smooth images using a Gaussian kernel of size 9 × 9 with σ = 1.1. For
warping, we apply bilinear interpolation and averaged image derivatives. Moreover, we perform five warping steps, each
with five iterations of our block-coordinate descent scheme. We follow Revaud et al. and compute optical flow updates with
30 iterations of successive over relaxation, which performs noticeably faster than the solver used in [43].

C.3. Evaluation of design choices

Table 6 summarizes results of AEPE, AUC, and CC on the Middlebury and Sintel benchmarks using varying setups of
ProbClassicA and ProbFlowFields. In a first step, we evaluate a setting for ProbClassicA in which parameters λD, λS, and λN
are determined by having the Bayesian optimization [42] consider only the AEPE or only the AUC instead of the F1-score



ProbClassicA Middlebury AEPE rel. chg. AUC rel. chg. CC rel. chg.

Baseline 0.296 – 0.466 – 0.374 –
Bayesian optim. w.r.t. AEPE only 0.290 -0.02 0.471 0.01 0.351 0.06
Bayesian optim. w.r.t. AUC only 0.312 0.05 0.436 -0.06 0.451 -0.21
EN = EC = 0 0.411 0.39 0.889 0.91 0.125 0.67
No structure-texture decomposition 0.290 -0.02 0.445 -0.05 0.361 0.03

ProbFlowFields Sintel validation AEPE rel. chg. AUC rel. chg. CC rel. chg.

Baseline 3.127 – 0.398 – 0.563 –
Bayesian optim. w.r.t. AEPE only 3.128 <0.01 0.475 0.19 0.407 0.28
Bayesian optim. w.r.t. AUC only 3.219 0.03 0.381 -0.04 0.644 -0.14
Spatially constant λS 3.127 0.00 0.400 <0.01 0.562 <0.01
θrij = 1 3.125 >-0.01 0.396 >-0.01 0.548 0.03
No gradient averaging 3.135 <0.01 0.398 0.00 0.557 0.01
No Gaussian smoothing 3.135 <0.01 0.441 0.11 0.497 0.12
10 warping steps 3.123 >-0.01 0.421 0.06 0.538 0.04

Table 6. Analysis of several design choices for ProbClassicA on Middlebury and ProbFlowFields on the Sintel validation set. Bold entries
denote strong deviations from the baseline.

proposed in Eq. (20). In both cases, we observe that the performance w.r.t. the evaluation metric that is not considered during
the Bayesian optimization drops significantly. This highlights the importance of the F1-score to balance the accuracy of
flow and uncertainty estimates. Moreover, we show that the AEPE as well as the performance of the uncertainty measure is
clearly inferior if no additional nonlocal term is applied (EN = EC = 0). When using ProbClassicA without structure-texture
decomposition as pre-processing, we surprisingly obtain improved results for the AEPE (2%) as well as the AUC (5%). This
is in contrast to energy minimization, where this pre-processing helps [43]. For fairness of comparison to the underlying
energy minimization approach, we continue to use a structure-texture decomposition.

Considering ProbFlowFields, we observe the same behavior as for ProbClassicA when Bayesian optimization is carried
out only with respect to one of the evaluation metrics. Note that the parameter setting obtained by a Bayesian optimization
w.r.t. to the AEPE performs better than the baseline on the training set even though no improvement of the AEPE is visible
on the validation set. The usage of a spatially constant trade-off parameter λS, turning off the normalization of the spatial
derivatives (θrij = 1, c.f . Eqs. (17) and (18)), and not averaging the image gradients, respectively, only lead to minor changes.
When no Gaussian smoothing is applied for image pre-processing, a clear effect on the AUC as well as the CC can be
observed whereas the AEPE is only slightly changed. Finally, the application of 10 warping steps only results in small
improvements of the AEPE and even decreases the performance of the uncertainty measure. This justifies the usage of a
reduced number of 5 steps to save computational time.

C.4. Post-processing using the fast bilateral solver

As described in Sec. 7.3, we apply the fast bilateral solver [4] on top of ProbFlowFields in order to illustrate the benefits of
uncertainty predictions for a further improvement of the flow estimates. In doing so, we normalize the estimated uncertainties
with a sigmoid function and invert the values to obtain the confidences required by the fast bilateral solver. A Bayesian
optimization [42] is performed on our Sintel training set to obtain appropriate sigmoid parameters as well as a suitable
trade-off parameter for the fast bilateral solver. See Fig. 5 for a screenshot of the private Sintel benchmark table showing
results after post-processing (ProbFlowFields + BS). For the reported baseline, we process the estimates of ProbFlowFields
assuming a uniform confidence of 0.5.

D. Additional Uncertainty Measures
In the following, we evaluate several additional uncertainty measures on the Middlebury as well as the Sintel benchmark.

Haußecker and Spies [20] introduce three confidence measures based on the spatio-temporal structure tensor

S = G(σ̃) ∗
[
(∇3I)(∇3I)T] with ∇3I = (Ix, Iy, It)

T, (42)

where Ix and Iy denote the spatial image derivatives computed with central differences and It is the temporal difference
between I1 and I2. Following [30], we smooth the derivatives with a Gaussian filter G(σ̃) of size 7 × 7 and a standard



Figure 5. Screenshot of private Sintel table (final) showing results for ProbFlowFields and ProbFlowFields + BS (status as of July 2017).

Uncertainty measure AUC rel. chg. CC rel. chg.

Ct [20] 1.058 1.27 -0.106 1.28
Cs [20] 1.014 1.18 -0.057 1.15
Cc [20] 0.967 1.08 -0.022 1.06
Ev3 [27] 0.989 1.12 0.058 0.84
Noise 0.512 0.10 0.286 0.24
ProbClassicA (ours) 0.466 0.00 0.374 0.00
Oracle 0.255 – 1.000 –

Table 7. Area under curve (AUC), Spearman’s rank correlation co-
efficient (CC), and relative change (rel. chg.) in comparison to the
our uncertainty measure on the Middlebury dataset.

Uncertainty measure AUC rel. chg. CC rel. chg.

Ct [20] 1.130 1.84 -0.128 1.23
Cs [20] 1.154 1.90 -0.149 1.26
Cc [20] 0.915 1.30 0.129 0.77
Ev3 [27] 1.024 1.57 -0.030 1.05
Noise 0.512 0.29 0.382 0.32
ProbFlowFields (ours) 0.398 0.00 0.563 0.00
Oracle 0.182 – 1.000 –

Table 8. Area under curve (AUC), Spearman’s rank correlation co-
efficient (CC), and relative change (rel. chg.) in comparison to our
uncertainty measure on a Sintel benchmark validation set.

deviation σ̃ = 2. In [20], eigenvalues λ1, λ2, and λ3 of S are computed such that λ1 ≥ λ2 ≥ λ3. Uncertainty measures are
then obtained as

ΨCt = −
(
λ1 − λ3
λ1 + λ3

)2

, ΨCs = −
(
λ1 − λ2
λ1 + λ2

)2

, and ΨCc = ΨCt −ΨCs. (43)

Moreover, we evaluate a baseline uncertainty measure as used in [27] defined as ΨEv3 = −λ3.
Finally, we compare to a sampling-based measure similar to the idea of Kybic and Nieuwenhuis [27]. That is, we estimate

the uncertainty as the variance of the optical flow estimates resulting from small, random perturbations of the input data.
Specifically, we apply zero-mean Gaussian noise on the input images and determine appropriate values for the variance of
the noise on the training set. The uncertainty measure is then obtained as ΨNoise =

√
σ2
u + σ2

v with σu and σv denoting the
standard derivation of the horizontal and vertical flow estimates per pixel.

As can be seen in Tables 7 and 8, all measures based on the structure tensor perform considerably worse than our proposed
uncertainty measure. ΨCc and ΨEv3 lead to more meaningful uncertainties than the two remaining approaches on both
datasets, but perform similar to the simple gradient-based measure [3]. The noise uncertainty – especially on the Middlebury
dataset – performs comparably to ΨEnergy and ΨLearned. However, our ProbFlow approach clearly leads to superior results.

E. ProbFlowFields on Middlebury
For completeness, we report the results of ProbFlowFields on Middlebury. To reproduce the Middlebury results shown

in [1] we applied the default settings of the EpicFlow interpolation. Moreover, we use GSM potentials trained on the Sintel



training test

Method AEPE rel. chg. AEPE rel. chg.

Initialization 0.307 0.38 – –
FlowFields [1] 0.240 0.08 0.331† 0.10
FieldsFields? 0.230 0.04 – –
ProbFlowFields (ours) 0.222 0.00 0.301 0.00

Table 9. Average end-point error (AEPE) and relative change (rel.
chg.) in comparison to the ProbFlowFields method on the Middle-
bury benchmark. †Please note that we did not re-evaluate Flow-
Fields, but show the publicly available results.

Uncertainty measure AUC rel. chg. CC rel. chg.

Gradient [3] 1.244 1.72 -0.077 1.21
Laplace 0.539 0.18 0.297 0.20
Energy [8] 0.563 0.23 0.253 0.32
Learned [30] 0.473 0.04 0.374 >-0.01
ProbFlowFields (ours) 0.457 0.00 0.371 0.00
Oracle 0.247 – 1.000 –

Table 10. Area under curve (AUC), Spearman’s rank correlation
coefficient (CC), and relative change (rel. chg.) in comparison to
the energy uncertainty measure on the Middlebury training set.

...
...

...

Figure 6. Screenshot of private Middlebury table showing results for ProbFlowFields and ProbClassicA (status as of July 2017).

dataset for our ProbFlowFields approach. The results evaluating the AEPE on the Middlebury benchmark can be found in
Table 9. We outperform the original FlowFields approach on training and test and obtain improved results in comparison to
FlowFields?. Please note that the Middlebury benchmark policy allows no more than one entry per method in the public table.
Therefore, we decided to show the results of ProbFlowFields on the Middlebury website whereas the results of ProbClassicA
from Table 1 of the main paper are only visible in a private table, see Fig. 6 for a screenshot.

Table 10 shows an evaluation of different uncertainty measures. In contrast to our remaining experiments, the Laplace and
learned uncertainty measures both outperform the energy-based approach. Our uncertainty measure is slightly outperformed
by ΨLearned w.r.t. the CC metric. However, ProbFlowFields shows clearly superior results considering the AUC.
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