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In this supplementary material, we provide details on
how RDR works for large-pose 2D landmark detection and
its network architecture.

1. 3D to 2D Landmark Projection
How accurate the following projection relationship can

capture the true correspondence between 2D and 3D is
important for performance of the 2D landmark detection,

Sp = M(Q)
{v} ∈ R2×L (1)

where M(Q)
{v} are 2D landmark locations via direct

3D-to-2D projection from 3D face generated with 3D
reconstruction parameters Q. Here Q = [αααid,P,αααexp].
P = [φ, γ, θ, t3d, f ] denotes the pitch, yaw and roll rotation
angles, translation vector and focal length of the projection
operation. We use αααid to denote the identity reconstruction
coefficients and αααexp for the coefficients for expression
blendshapes. Within Eqn. (1), v = [v1s , . . . , v

L
s ] ∈ RL

indexes those vertices corresponding to L landmarks on
the 3D face. 3D-to-2D landmark projection is to find the
accurate correspondence between the 3D vertices and 2D
landmarks. Correspondence between the 3D vertices of the
interior facial components (e.g., eyebrows, eyes, nose and
mouth) and the 2D landmarks can be fixed as they are pose
invariant (independent of P).

However, the correspondence between the 3D contour
vertices and the 2D contour landmarks may have much
larger variance and would change dramatically with the
face pose [2, 15]. To find the correspondence, Zhu et
al. [15] proposed to use parallel lines to help locate the
corresponding contour landmarks. When the pose varies,
landmarks will move along their corresponding parallel
lines to their visibility boundary. An example is given
in Fig. 1. The visibility boundary is simply the extreme
of x coordinates (the minimal x among the left contour
points and the maximal x among the right contour points).
This ensures the efficiency and quality of searching for
correspondence points due to limited vertices on each
parallel line.

Figure 1. We improve the correspondence between 3D vertices and
2D landmarks by using both parallel lines and the exact contour
line to locate corresponding vertices of contour landmark points.
In this figure, parallel lines (red and yellow) of 4 contour points
are drawn for illustration purpose. The key vertices are moving on
their corresponding parallel lines. [15] directly use the extreme
coordinates as the contour line (the first three figures). This may
fail when the lower face region occludes the upper face region as
shown in the third figure. To improve the robustness, we extract
the contour line (the fourth figure) first. The contour landmarks
are those vertices appear on both contour line and parallel lines.
(Best viewed in color)

The above method relies on a critical assumption that
extreme coordinates are always on the visibility boundary.
However, the assumption may not hold when there is both
large pitch and yaw angles, as illustrated in Fig. 1. In this
work, we further improve the parallel line based method
[15] by extracting the face contour line using a similar
method as [10]. For a given 3D frontal face reconstructed
with predicted αααid and αααexp, we rotate the face based on
the estimated pitch and yaw angles first. Roll angle is not
considered here since the correspondence between the 3D
vertices and the 2D landmarks is invariant to roll rotation.
Contour line (orange line from the fourth figure from Fig. 1)
is then extracted from the rotated 3D face. The parallel
lines are employed to find the face contour landmarks by
looking for the intersection between the extracted contour
line (orange) and the parallel lines of contour landmarks
(red and yellow). Since the rest landmarks for interior facial
parts have fixed corresponding vertices, they are selected
from the 3D model directly. Readers may also refer to [15]
for details of how the parallel lines are defined.
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Figure 2. Overview of the proposed RDR model for large-pose facial landmark detection. Given an input 2D face image, RDR first
directly predicts initial 3D face fitting parameters with the 3D parameter initialization module, generates an initial 3D face mesh and infers
initial 2D landmark locations via 3D-to-2D projection. It then recurrently refines both the 3D face and 2D landmark locations with a dual
refinement module consisting of a 3D face refinement component (PE-LSTM) and a 2D landmark refinement component (C-LSTM) with
deep features directly extracted from the regression feature network.

2. Architecture Details of RDR

Architecture of RDR is given in Fig. 2. It consists of
a 3D parameter initialization module, a regression feature
network and a dual refinement module. The parameter
initialization module is built on a variant of ResNet-18 [4].
All layers after pool5 from the original ResNet-18 are
removed. The regression feature network is designed to
provide features for dual refinement of both 3D face model
and 2D landmark locations.

Within the 3D parameter initialization module, pool5 is
connected to the last convolution layer of ResNet-18 [4]
whose output dimension is 512× 4× 4. Three independent
fc5 layers, as shown in Fig. 2, for predicting three types of
parameters, i.e. fc5-p, fc5-id and fc5-exp, are connected
to pool5 and they have output size of 128, 256 and 512
respectively. Outputs of fc5 layers are directly fed into their
corresponding fc6 layers. The fc6-p, fc6-id and fc6-exp
have output dimension of 7, 50 and 46 and predict P, αααid

and αααexp respectively.
The regression feature nework takes output from Res3b

as input and passes it through a de-convolutional layer
(deconv4) with kernel size 4, stride 2 and output dimension
48. The resulted 48 × 64 × 64 response map is then
fed into another de-convolutional layer (deconv5), giving
a response map of 80× 128× 128. Within the architecture,
conv6 (not shown in Fig. 2 since it only appears in the
training process) is a softmax regression layer which takes
outputs of deconv5 as input. It produces the feature map
of 68 × 128 × 128 — each channel is only responsive to
the location of a specific landmark. By introducing the

last convolutional layer, the features learnt in deconv5 can
therefore provide effective high-level discriminative feature
for dual refinement of both 3D face model and 2D landmark
locations.

The deep shape-indexed features extracted around the
previously predicted 2D landmark locations from deconv5,
Φ(Ddeconv5, S

k−1) ∈ Rw, are passed through two fully
connected layers to generate final inputs for the two
refinement components (PE-LSTM and C-LSTM) within
the dual refinement module. Here, we use Sk−1 ∈ R2×68

to denote the 2D landmark locations predicted in previous
iteration. w = 80 × 68 is the dimension of the deep
shape-indexed features since our model predicts locations
of 68 landmarks and deconv5 has 80 channels. Each fully
connected layer reduces the deep shape-indexed features to
dimension of 256 during the dual refinement process. This
effectively reduces the model size. PE-LSTM is designed
to refine the 3D parameters P,αααexp and hence has output
dimension of 53. C-LSTM has output dimension of 136
and is designed to refine the 2D landmark locations.

3. Additional Experimental Results
Due to limited space, landmark detection results of our

model on AFLW-PIFA are presented here. AFLW-PIFA
consists of 3,901 training images and 1,299 testing images.
Face images from ALFW-PIFA [5] are originally annotated
with 21 landmarks in [7] and extended to 34 landmarks
in [6]. Our originally trained model is evaluated on both
settings. Table 1 and Table 2 both show that our method
outperforms the current state-of-the-art methods.
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Table 1. Landmark detection results of AFLW-PIFA with 21
landmarks. Results are obtained from [13].

Method NME
CDM [11] 8.59
RCPR [1] 7.15
CFSS [12] 6.75
ERT [3] 7.03
SDM [9] 6.96
PIFA [5] 6.52
CCL [13] 5.81
RDR (Ours) 4.07

Table 2. Landmark detection results of AFLW-PIFA with 34
landmarks. Results are obtained from [6].

Method NME
RCPR [1] 6.26
PIFA [5] 8.04
D3PF [6] 4.72
RDR (Ours) 4.11

ALFW2000-3D [14] is another dataset formed with
images from AFLW. Face images from AFLW2000-3D are
annotated with 68 landmarks with the inner landmarks have
same definition as that of 300-W [8]. The face contour
landmarks from [14] are on the absolute jawline.

Our trained 3D model gives NME of 5.36 on the
AFLW2000-3D dataset which is better than 3DDFA
(5.42) [14]. Our 2D model (3D+2D) has NME of 4.93,
better than 3DDFA+SDM (4.94) [14]. The performance
enhancement is not very significant on the AFLW2000-3D
dataset. This is possibly because our model is trained on
the conventional 68 landmarks [8] which is different from
AFLW2000-3D setting with contour landmarks annotated
on the absolute jawline. Its performance can be further
improved via fine-tuning on the AFLW2000 landmark
setting. When only evaluating on the 51 landmarks
(removing the contour landmarks), our model gives NMEs
of 3.69 and 3.25 for 3D and 2D landmark predictions
respectively. Such error is pretty low.
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