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1. Some Statistics on Public/Private Images

We are interested in leveraging ‘private’ images, which
are not shared publicly but just saved on a personal storage
privately, for visual learning. In this section, we would like
to provide some statistics that motivate our work.

Based on the recent report from Kleiner Perkins Cau-
field & Byers [14], the number of photos shared publicly
on several social networking services (Snapchat, Instagram,
WhatsApp, Facebook Messenger, and Facebook) per day
has reached almost 3.5 billion in 2015. It also shows that
the number of smartphone users in the world was about 2.5
billion in the same year. From these statistics, if everyone
takes three photos per day on average, about four billion
photos in total would be stored privately everyday. Some
prior work [9, 10] has shown that such private photos still
contained meaningful information including people, faces,
and written texts, as well as some sensitive information like
a computer screen and a bedroom. Our privacy-preserving
framework is designed to learn visual classifiers by leverag-
ing this vast amount of private images while preserving the
privacy of the owners.

2. Examples of Privacy Leakage from Locally-
Updated Classifiers

In our framework, users update classifier weights w̄t ∈
RD locally using their own private data and send the up-
dated ones w(n)

t ∈ RD to the aggregator. Here we discuss
how the combination of w̄t and w(n)

t can be used to reveal
a part of the trained data.

Let us denote a labeled sample by zi = (xi, yi) where

xi ∈ RD is a feature vector and yi ∈ {−1, 1} is a binary
label. The whole data privately owned by a single user is
then described by Z = {zi | i = 1, . . . ,K}. In order to
learn a classifier, we minimize a regularized loss function
which is defined with weights w and data Z as follows:

Q(Z,w) = `(Z,w) + λR(w), (1)

where `(Z,w) is a loss function, R(w) is a certain regular-
izer, and λ is a regularization strength.

2.1. Stochastic Gradient Descent

As described in Section 2.1 of the original paper, a part
of trained private data could be leaked when users update a
classifier via stochastic gradient descent (SGD). With SGD,
users obtain weights w(n)

t by updating w̄t based on the
gradient of regularized loss with respect to single sample
zt = (xt, yt) ∈ Z picked randomly from Z [3]:

w
(n)
t = w̄t − γt∇w̄t

Q(zt, w̄t), (2)

where γt is a learning rate at time step t and controls how
much one can learn from the sample zt. Loss gradient
∇w̄t

Q(zt, w̄t) is described as follows:

∇w̄t
Q(zt, w̄t) = ∇w̄t

`(zt, w̄t) + λ∇w̄t
R(w̄t). (3)

By plugging Equation (3) into Equation (2), we obtain:

∇w̄t
`(zt, w̄t) =

w̄t −w(n)
t+1

γt
− λ∇w̄t

R(w̄t). (4)

Now we are interested in what one can know about
zt = (w̄t, yt) from Equation (4) where both w̄t and w(n)

t+1



are given. If the type of regularizer R(·) can be identified
(e.g., L2 regularization), ∇w̄t

R(w̄t) can be computed ex-
actly. In addition, if concrete parameters for γt and λ can
be guessed (e.g., when using a default parameter of open
source libraries) and if a specific loss function is used for
`(zt, w̄t), one can narrow down the private sample zt to
several candidates.

Specifically, let Θ be the RHS of Equation (4), which is
given when R(·) is identified and γt, λ is estimated. Then,
when using some specific loss functions, we can solve
∇w̄t

`(zt, w̄t) = Θ for zt as follows:

Hinge loss ∇w̄t
`(zt, w̄t) = 0D (an all-zero vector of size

D) if 1 − ytw̄>t xt < 0 or −ytxt otherwise. If Θ is a
non-zero vector, then zt = (Θ,−1) or (−Θ, 1).

Logistic loss ∇w̄t
`(zt, w̄t) = −ytxt

1+exp(ytw̄>
t xt)

=
−X

1+exp(w̄>
t X)

, where w̄t is known and X = ytxt. X
can be obtained numerically (e.g., via the Newton’s
method), and zt = (X, 1) or (−X,−1).

Note that this problem of sample leakage can happen
also when users have just a single image in their storage.

2.2. Gradient Descent

When users have more than one image, it might be nat-
ural to use a gradient descent (GD) technique instead of
SGD. Namely, we evaluate the loss gradient averaged over
the whole data ∇w̄t

`(Z, w̄t) = 1
K

∑
i∇w̄t

`(zi, w̄t) in-
stead of that of a single sample. Although this averaging
can prevent one from identifying individual sample zi, the
equation ∇w̄t

`(Z, w̄t) = Θ still reveals some statistics of
private data Z . Specifically, if the class balance of data is
extremely biased, one can guess an average of samples that
were not classified correctly. One typical case of class un-
balance arises when learning a detector of abnormal events.
This will regard most of training samples as negative ones.

Let us consider an extreme case where all of the samples
owned by a single user belong to the negative class, i.e.,
yi = −1 ∀zi = (xi, yi) ∈ Z . If we use the hinge loss, a
set of samples that were not classified perfectly is described
by Z̄ = {zi = (xi, yi) | yiw̄>t xi < 1} ⊆ Z . Then, the
averaged loss gradient is transformed as follows:

∇w̄t
`(Z, w̄t) =

1

K

∑
zi∈Z̄

−yixi =
1

K

∑
zi∈Z̄

xi = Θ. (5)

Namely, Θ is proportional to the average of samples that
were not classified correctly.

For the logistic loss, when yi = −1, the loss gradient
with respect to a single sample becomes ∇w̄t

`(zi, w̄t) =
xi

1+exp(−w̄>
t xi)

= P (yi = 1 | xi)xi, where P (yi = 1 |
xi) is close to 0 when zi is classified correctly as negative,
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Figure 1. Image Reconstruction from Features with [4]

and increases up to 1 when classified incorrectly as positive.
Then, the averaged loss gradient becomes:

∇w̄t
`(Z, w̄t) =

1

K

∑
i

P (yi = 1 | xi)xi = Θ. (6)

If all the samples are classified confidently, i.e., |w̄>t xi| �
0 ∀zi ∈ Z , Θ is again proportional to the average of sam-
ples not classified correctly.

2.3. Reconstructing Images from Features

The previous sections demonstrated that classifiers up-
dated locally via SGD/GD could expose a part of trained
feature vectors. We argue that users will further suffer from
a higher privacy risk when the features could be inverted
to original images (e.g., [4, 13, 21]). Figure 1 showed ex-
amples on image reconstruction from features using [4] on
some images from Caltech101 [6]. We extracted outputs
of the fc6 layer of the Caffe reference network used in the
open source library1. Although reconstructed images do not
currently describe the fine-details of original images (e.g.,
contents displayed on the laptop), they could still capture
the whole picture indicating what were recorded or where
they were recorded.

3. Additional Experimental Results
In the original paper, we evaluated our approach on a

variety of tasks not only object classification on the classic
Caltech Datasets [6, 7] but also face attribute recognition
and sensitive place detection on a large-scale dataset [5, 12].
This section introduces some additional experimental re-
sults using different tasks or datasets.

Video Attribute Recognition on YouTube8M Subset
We evaluated the proposed method (DPHE) as well as the
two privacy-preserving baselines (PPR10 [17], RA12 [18])
on a video attribute recognition task using a part of
YouTube8M dataset [1]. Specifically, we picked 227,476
videos from the training set and 79,398 videos from the val-
idation set. Similar to the data preparation in Section 3.2
of the original paper, 50,000 videos of our training set were
left for the initialization data and the rest was split into five

1http://lmb.informatik.uni-freiburg.de/
resources/software.php

http://lmb.informatik.uni-freiburg.de/resources/software.php
http://lmb.informatik.uni-freiburg.de/resources/software.php


Table 1. Video Attribute Recognition Results on the Part of
YouTube8M Dataset: mean average precision (mAP) for the top
10, 50, and 100 frequently-annotated attributes.

Methods mAP (∼10) (∼50) (∼100) Privacy

PRR10 [17] 0.62 0.45 0.38 3
RA12 [18] 0.60 0.45 0.37 3

No-PP 0.70 0.55 0.48 7

DPHE 0.70 0.53 0.47 3

to serve as private data with N = 5. Although over 4,000
attributes like ‘Games,’ ‘Vehicle,’ and ‘Pina Records.’ were
originally annotated to each video, our evaluation used the
top 100 frequent attributes that were annotated to more than
1,000 videos in our training set. For each video, we ex-
tracted outputs of the global average pooling layer of the
deep residual network [8] trained on ImageNet [19] every
30 frame (about once in a second) and average them to
get a single 2048-dimensional feature vector. Table 1 de-
scribes the mean average precision (mAP) for the top 10,
50, and 100 frequently-annotated attributes. We confirmed
that DPHE outperformed the two privacy-preserving base-
lines. The sparsity of locally-updated classifiers was 65%
on average, which resulted in about 3.5 minutes for the en-
cryption. In order to see the original performance obtained
by using residual network features, we introduced another
baseline (No-PP in the table) that learned an L2-regularized
linear SVM on the whole training data via SGD. The results
demonstrated that the performance with DPHE was almost
comparable to that with No-PP.

Clustering on Caltech101/256 Unlike the other privacy-
preserving baselines [17, 18], DPHE can also be applied
to an unsupervised clustering task based on mini-batch k-
means [20]. Instead of learning a classifier with the ini-
tialization data, an aggregator first runs k-means++ [2] to
distribute cluster centroids to users. Users then update the
centroids locally with sparse constraints. We used the L1-
regularized stochastic k-means [11] to obtain the sparse
centroids. Regularization strength (η in [11]) was chosen
adaptively so that the sparsity of cluster centroids was more
than 90% on average. Table 2 shows an adjusted mutual
information score of the clustering task on Caltech101 [6]
and Caltech256 [7]. As a baseline method, we chose a stan-
dard mini-batch k-means (S10 [20]). For all of the methods,
the number of image categories was given as the number of
clusters, i.e., we assumed that the correct cluster number
was known. We found that DPHE achieved a comparable
performance to the baseline method.

4. Security Evaluation
Finally, we introduce a formal version of our security

evaluation on Algorithm 1 that supplements Section 2.5 in

Table 2. Clustering Results on Caltech101/256: adjusted mutual
information scores given the correct number of clusters.

Methods Caltech101 Caltech256 Privacy

S10 [20] 0.733 0.630 7

DPHE 0.753 0.614 3

the original paper. Recall that our framework involves the
following three types of parties:

Definition 1 (Types of parties). Let U (1), . . . , U (N) be N
users,A be an aggregator, andG be a key generator. We as-
sume that they are all semi-honest [15] and do not collude.
U (n) has private data w(n) ∈ RD. U (n) can communi-
cate only with A and G, while A and G can communicate
with all of the parties. U (j) (j 6= n) may be malicious and
intercept data sent from U (n) to A.

With DPHE, private data w(n) is first decomposed into
w(n) = K(n)v(n), where v(n) ∈ RM , K(n) ∈ {0, 1}D,M ,
and M is an encryption capacity indicating the maximum
number of values that are Paillier encrypted. K(n) is called
an index matrix and defined as follows:

Definition 2 (Index matrix). An index matrix of w ∈ RD

given v ∈ RM is a binary matrix K ∈ {0, 1}D×M such
that the number of ones for each column is exact one and
that for each row is at most one and w = Kv. Let KD,M

be a set of all possible index matrices of size D ×M .

To make v(n) secure, we use the Paillier encryption [16].
On the encrypted data ζ

(
v(n)

)
, the following lemma holds

based on Theorem 14 and Theorem 15 in [16]:

Lemma 3 (Paillier Encryption [16]). Let ζ (v) be a vector
which is obtained by encrypting v with the Paillier cryp-
tosystem. Then, no one can identify v from ζ (v) without a
decryption key.

Note that the Paillier encryption of v(n) also helps to
keep secret the number of non-zeros in w(n) since M is
always greater than or equal to the non-zero number.

On the other hand, DPHE doubly-permutes K(n),
namely Φ

(
K(n)

)
= φ(n)φK(n), where φ(n),φ ∈

{0, 1}D×D is a permutation matrix defined as follows:

Definition 4 (Permutation matrix). A permutation matrix
that permutes D elements is a square binary matrix φ ∈
{0, 1}D×D such that the number of one for each column
and for each row is exact one. LetΩD be a set of all possible
permutation matrices of size D.

In DPHE, U (n) has both φ and φ(n) but does not have
{φ(j) | j 6= n}, while A has {φ(n) | n = 1, . . . , N} but
does not have φ. In what follows we prove that without
having both of φ and φ(n), one cannot identify K(n) from



Φ
(
K(n)

)
(i.e., only U (n) can identify K(n)). As prelimi-

naries, we introduce several properties of index and permu-
tation matrices based on Definition 2 and Definition 4.

Corollary 5 (Properties of index matrices). For φ ∈ ΩD

and K ∈ KD,M , φK ∈ KD,M .

Corollary 6 (Properties of permutation matrices). For
φ,φ′ ∈ ΩD, φ−1 = φ> ∈ ΩD, and φφ′ ∈ ΩD.

Then, the following lemma about Φ
(
K(n)

)
holds:

Lemma 7 (Reordering Φ
(
K(n)

)
). Let Φ

(
K(n)

)
=

φ(n)φK(n) ∈ KD,M where φ(n),φ ∈ ΩD and K(n) ∈
KD,M . Suppose that Φ

(
K(n)

)
is known and K(n) is un-

known. Then, K(n) can be determined uniquely if and only
if both φ and φ(n) are known.

Proof. If both of φ and φ(n) are known, K(n) can be de-
termined uniquely as K(n) = φ>(φ(n))>Φ

(
K(n)

)
where

the variables in the RHS are all known. To prove the ‘only-
if’ proposition, we introduce its contrapositive: ‘if at least
one of φ and φ(n) is unknown, K(n) cannot be determined
uniquely.’ Let φ′ = φ>(φ(n))> ∈ ΩD (which is also a
permutation matrix as shown in Corollary 6) which is un-
known when at least one of φ and φ(n) is unknown. For
arbitrary φ′, K(n) = φ′Φ

(
K(n)

)
is always an index ma-

trix as shown in Corollary 5. Therefore, K(n) cannot be
determined uniquely as long as φ′ is not fixed. This means
that the contrapositive is true, and Lemma 7 is proved.

The combination of Lemma 3 and Lemma 7 proves that
the aggregator A and user U (j) (j 6= n) cannot iden-
tify U (n)’s private data w(n) and its non-zero indices from
encrypted data ζ

(
v(n)

)
,Φ
(
K(n)

)
. The remaining con-

cern is if one can identify w(n) or its non-zero indices
from w̄ = 1

N

∑
nw

(n). As shown in the original paper,
when N ≥ 3, it is impossible for any party to decompose∑

nw
(n) into individual w(n)’s or to decompose non-zero

indices of w̄ into those of individual w(n)’s, as long as all
parties are semi-honest and do not collude to share private
information outside the algorithm.

To conclude, the following theorem is proved:

Theorem 8 (Security on Algorithm 1). After running
Algorithm 1 by semi-honest and non-colluding parties
U (1), . . . , U (N), A, and G where N ≥ 3, no one but U (n)

can identify private dataw(n) and its non-zero indices from
obtained information.
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