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In the supplementary material, we first provide the con-
vergence proof of ADMM algorithm on non-convex func-
tions if the non-convex function satisfies some requirements.
Then we will show information of the experiment data-sets,
including selected input images, screenshots of distributed
bundle adjustment results by our method and screenshots of
selected blocks split by the proposed method.

1. Convergence Proof
We provide a proof for the following statement for non-

convex function in this section and the convergence state-
ment of ADMM algorithm for the bundle adjustment ob-
jective function in section 3.1 of the paper body can be
obtained by using the following statement.

Theorem With the objective function in Eqn. 7 in the
paper body in which the gradients of each function fi are
local Lipschitz continuous with Lipschitz constant Li, let
{xti} ⊂ RnN denote a sequence generated by the iterations
in Eqn. 8, 9 and 10 in the paper body, where n is the di-
mension of variables and N is the number of split function.
Then, there exists a ρ > max{Li, i = 1, ..., N}), such that
the iterations in Eqn. 8, 9 and 10 in the paper body are
guaranteed to converge to a local minimum of Eqn. 7 in the
paper body.

The convergence proof mainly refers to the convergence
proof of ADMM on convex functions in the appendix of [2].
Note the right of Eqn. 8 in the paper body as
Liρ (xi, z,yi), namely

Liρ (xi, z,yi) =
(
fi(xi) + yTi (xi − z) +

ρ

2
||xi − z||22

)
(S.1)

The primal and dual residuals are

rt =
(
rti, ..., r

t
N

)
st = −ρ

(
zt − zk−1, ..., zt − zk−1

)︸ ︷︷ ︸
N

(S.2)

where rti = xti − zt.
Note xt = (xt1, ...,x

t
N ) and yt = (yt1, ...,y

t
N ). Let

(x∗, z∗,y∗) be a saddle point for
∑N
i=1 L

i
0(xi, z,yi) =∑

i=1(fi(xi) + yTi ri), where x∗ = (x∗1, ...,x
∗
N ) and y∗ =

(y∗1, ...,y
∗
N ). Note p∗ is the optimal value of Eqn. 7 in the

paper body and pt+1 =
∑N
i=1 fi(x

t+1
i ). Define

V t =
1

ρ

∥∥yt − y∗
∥∥2

2
+ ρN

∥∥zt − z∗
∥∥2

2
(S.3)

The convergence proof of ADMM on convex functions con-
tains three inequality

V
t+1 ≤ V t − ρ

∥∥∥rt+1
∥∥∥2
2
− ρN

∥∥∥zt+1 − z
t
∥∥∥2
2

(S.4)

p
t+1 − p∗ ≤ −y(t+1)T

r
t+1

− ρ
(
z
t+1 − z

t
)T

(
N
(
z
t+1 − z

∗
)

+
N∑

i=1

r
t+1
i

)
(S.5)

p
∗ − pt+1 ≤ y

∗T
r
t+1 (S.6)

Suppose above inequalities are satisfied, referring to [2],
iterating the inequality S.4, we will get

ρ
∞∑
t=0

(∥∥rt+1
∥∥2

2
+N

∥∥zt+1 − zt
∥∥2

2

)
≤ V 0, (S.7)

which implies that rt → 0 and zt+1 − zt → 0 as k → 0.
zt+1 − zt → 0 means dual residual st → 0. rt → 0 and
zt+1 − zt → 0 results in that the right sides of inequali-
ties S.5 and S.6 go to zero. Thus, we have limt→∞ pt = p∗,
namely the iteration will converge into the optimal value.

1.1. Proof of inequality S.6

Since x∗i = z∗, we have∑
Li0
(
x∗i , z

∗,y∗ti
)

=
∑

fi(x
∗
i ) = p∗. (S.8)

1



And∑
Li0
(
xt+1
i , zt+1,y∗i

)
= pk+1 + y∗T rt+1. (S.9)

Since (x∗i , z
∗,y∗i ) is a saddle point for

∑
Li0, we have∑

Li0 (x∗i , z
∗,y∗i ) ≤

∑
Li0
(
xt+1
i , zt+1,y∗i

)
, namely,

p∗ ≤ pt+1 + y∗T rt+1. (S.10)

1.2. Proof of inequality S.5

In the proof of inequality S.5 in [2], Lρ should be convex
on the domain. However, if f is not convex, Lρ cannot guar-
antee convex. Therefore, we need to show the convexity
of Lρ when the gradients of each function fi are Lipschitz
continuous with Lipschitz constant Li.

Let’s consider Eqn. 11 in the paper body in which yi is
substituted by ρui from Eqn. 8 in the paper body. Let

Ψi (x) = fi (xi) +
ρ

2
‖xi − a‖22 , (S.11)

where a = zt − uti. Then ∀b, c ∈ Rn, we have

(∇Ψi (b)−∇Ψi (c))
T

(b− c)

= (∇fi (b)−∇fi (c))
T

(b− c) + ρ ‖b− c‖22
(S.12)

Since fi is Lipschitz-continuous with a constant Li, with
Cauchy-Schwarz inequality, we have

(∇fi (b)−∇fi (c))
T

(b− c) ≥ −Li ‖b− c‖22

Thus, we have

(∇Ψi (b)−∇iΨ (c))
T

(b− c) ≥ (ρ− Li) ‖b− c‖22 (S.13)

Since ρ > max{Li, i = 1, ..., N}, Ψ (xi) is convex. There-
fore, the optimality condition of Eqn. 11 in the paper body
is

0 ∈ ∇fi
(
xt+1
i

)
+ ρ

(
xt+1
i + uti − zt

)
(S.14)

Substituting uti = 1
ρy

t
i and yti = yt+1

i − ρrt+1
i , we have

0 ∈ ∇fi
(
xt+1
i

)
+
(
yt+1
i + ρ

(
zt+1 − zt

))
(S.15)

Namely, for each i = 1, ..., N , xt+1
i minimizes

fi (x) +
(
yt+1
i + ρ

(
zt+1 − zt

))T
xi (S.16)

Since each xi is independent, accumulating all Eqn. S.16,
we have that xt+1 minimizes

f (x) +
N∑
i=1

(
yt+1
i + ρ

(
zt+1 − zt

))T
xi (S.17)

Namely,

f
(
xt+1

)
+

N∑
i=1

(
yt+1
i + ρ

(
zt+1 − zt

))T
xt+1
i

≤f (x∗) +
N∑
i=1

(
yt+1
i + ρ

(
zt+1 − zt

))T
x∗i

(S.18)

According to the consensus algorithm, zt+1 minimizes
Lρ(x

t+1, z,yt), similar to above process, which implies
zt+1 minimizes −

∑N
i=1 y

(t+1)T
i z, so we can get

−
N∑
i=1

y
(t+1)T
i zt+1 ≤ −

N∑
i=1

y
(t+1)T
i z∗ (S.19)

Adding inequalities S.18 and S.19 and considering that x∗i =
z, after rearranging, we obtain the inequalities S.5.

1.3. Proof of inequality S.4

Referring to the appendix of [2], adding inequalities S.5
and S.6, regrouping terms, we can get

2
(
yt+1 − y∗

)T
rt+1 + 2ρ

(
zt+1 − zt

)T N∑
i=1

rt+1
i

+ 2ρN
(
zt+1 − zt

)T (
zt+1 − z∗

)
≤ 0

(S.20)

By using yt+1 = yt+ρrt+1 and rewriting terms, the above
inequality can be written as

V t − V t+1 ≥ρ
∥∥rt+1

∥∥2

2
+ ρN

∥∥zt+1 − zt
∥∥2

2

+2ρ
(
zt+1 − zt

)T N∑
i=1

rt+1
i

(S.21)

According to the consensus algorithm, similar to the pro-
cess in section 1.2, zt+1 minimizes −

∑N
i=1 y

(t+1)T
i z and

zt minimizes −
∑N
i=1 y

tT
i z, so

−
N∑
i=1

y
(t+1)T
i zt+1 ≤ −

N∑
i=1

y
(t+1)T
i zt

−
N∑
i=1

ytTi zt ≤ −
N∑
i=1

ytTi zt+1

(S.22)

Adding above inequality and substituting yt+1
i −yti = ρrt+1

i ,
we have

ρ
(
zt+1 − zt

)T N∑
i=1

rt+1
i ≥ 0. (S.23)

Therefore, according inequality S.21,

V t − V t+1 ≥ ρ
∥∥rt+1

∥∥2

2
+ ρN

∥∥zt+1 − zt
∥∥2

2
(S.24)

Inequality S.4 is proved.



2. Experiment Data-set Information
In this section, we will provide some information of the experiment data-sets. Data-sets LadyBug, Venice, Final 961 and

Final 13682 are obtained from the work [1] and this work only provides the SfM results of these data-sets without original
images, so the points in the screenshots of SfM results are black. The blue rectangular pyramids are cameras, whose length of
bottom side is proportional to image size and hight is proportional to the focal length. Since the input Structure-from-Motion
results of LadyBug, Venice, Final 961 and Final 13682 provided by [1] are normalized, the principle points of cameras are
(0, 0). Besides, those data-sets do not have image sizes, so the cameras of those data-sets are visualized as blue lines before
bundle adjustment. Since our distributed bundle adjustment method will refine principle points, the blue lines as cameras of
those data-sets will change into pyramids with short bottom sides.

2.1. LadyBug

Figure. 1 shows the screenshots of SfM before and after distributed bundle adjustment by our method. The points after
distributed bundle adjustment are more tidy. From Figure. 2, it is clear that principle points are adjusted in the bundle
adjustment from zero to non-zero coordinates.

Figure 1: The screenshots of SfM for LadyBug before and after distributed bundle adjustment by our method. Left is before bundle
adjustment and right is after bundle adjustment.

Figure 2: Left is the detail of distributed bundle adjustment result of LadyBug. Right is the screenshots of two blocks selected from all for
LadyBug split by the proposed method.



2.2. Venice

The difference before and after bundle adjustment for Venice is not clear, so we only show the screenshot of the result
after bundle adjustment in Figure. 3.

Figure 3: The screenshots of SfM for Venice after distributed bundle adjustment by our method.

Figure 4: The screenshots of two blocks selected from all for Venice split by the proposed method.



2.3. Final 961

Figure. 5 shows the screenshots of SfM before and after distributed bundle adjustment by our method.

Figure 5: The screenshots of SfM for Final 961 before and after distributed bundle adjustment by our method. Up is before bundle
adjustment and down is after bundle adjustment.

Figure 6: The screenshots of two blocks selected from all for Final 961 split by the proposed method.



2.4. Final 13682

The difference before and after bundle adjustment for Final 13682 is not clear, so we only show the screenshot of the
result after bundle adjustment in Figure. 7.

Figure 7: The screenshots of SfM for Final 13682 after distributed bundle adjustment by our method.

Figure 8: The screenshot of two blocks selected from all for Final 13682 split by the proposed method.



2.5. Roman Forum

For the following data-sets, we will show some selected images. Since the difference of SfM results before and after
bundle adjustment is not clear for the following data-sets, we only show the screenshots of results after bundle adjustment by
our method.

Figure 9: Selected images of Roman Forum.

(a) (b)

Figure 10: (a) The screenshots of SfM for Roman Forum after distributed bundle adjustment by our method. Up is the top view and down
is the perspective view. (b) The screenshots of two blocks selected from all for Roman Forum split by the proposed method.



2.6. Piccadilly

Figure 11: Selected images of Piccadilly.

Figure 12: The screenshots of SfM for Piccadilly after distributed bundle adjustment by our method. Left is the top view and right is the
perspective view.

Figure 13: The screenshots of two blocks selected from all for Piccadilly split by the proposed method.



2.7. Trafalgar

Figure 14: Selected images of Trafalgar.

(a) (b)

Figure 15: (a) The screenshots of SfM for Trafalgar after distributed bundle adjustment by our method. (b) The screenshots of two blocks
selected from all for Trafalgar split by the proposed method.



2.8. Buildings

Figure 16: Selected images of Buildings.

(a) (b)

Figure 17: (a) The screenshots of SfM for Buildings after distributed bundle adjustment by our method. Up is the top view and down is
the perspective view. (b) The screenshots of two blocks selected from all for Buildings split by the proposed method.



2.9. Street

Figure 18: Selected images of Street.

Figure 19: The screenshots of SfM for Street after distributed bundle adjustment by our method. Up is the side view, middle is the top
view and the two in the bottom are the perspective view.



Figure 20: The screenshots of two blocks selected from all for Street split by the proposed method.

2.10. Town

Figure 21: Selected images of Town.



Figure 22: The screenshots of SfM for Town after distributed bundle adjustment by our method. Up is the top view, middle is the side view
and bottom is the perspective view. Points are sampled for visualization.

Figure 23: The screenshots of four blocks selected from all for Town split by the proposed method.



2.11. City

Figure 24: Selected images of City.

Figure 25: The screenshots of four blocks selected from all for City split by the proposed method.



Figure 26: The screenshots of SfM for City after distributed bundle adjustment by our method. Up is the top view, middle is the side view
and bottom is the perspective view. Points are sampled for visualization.
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