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1. Appendix I.a. Network Architectures

We denote each fully-connected layer fc(d) by its out-

put dimension d, and volumetric convolution layer by

conv3D(k, c, s) representing kernel size of k, strides of s

across three spatial axes, and c channels. 2D convolutional

layer is represented as conv2D(k, c, s). and the volumetric

transpose convolution layer by deconv3D(k, c, s).

Encoder and Generator for Aligned Shapes The

variational aligned shape encoder takes as input an

30×30×30×1 tensor, and consists of 3 convolution lay-

ers: conv3D(4, 32, 2), conv3D(4, 64, 2), conv3D(4, 64,

2); two fully-connected layers fc(200) and fc(200), regress-

ing from the last convolution feature to the 200-dimensional

mean and variance vectors for style embedding, following

[2]. The decoder takes in the 200-dimensional style vector,

and consists of one fully-connected layer fc(8192) to con-

nect the input vector to an 4×4×4×128 convolutional fea-

ture; and 3 transpose convolution layers deconv3D(4, 64,

2), deconv3D(4, 32, 2), deconv3D(4, 1, 2) output the re-

constructed shape with size 30×30×30×1. All convolution

and transpose convolution layer are batch batch normalized

except the first convolution and last transpose convolution

layer. LeakyReLU [3][1] is the rectifier for all layers except

the output layer which uses tanh. This architecture is also

used for 3D VAE in Section 4.2.

Image to Style/Pose Regressors The two regressors have

identical architecture of convolution layers: conv2D(11, 64,

4), conv2D(5, 128, 2), conv2D(5, 256, 2), conv2D(5, 512,

2), conv2D(3, 200, 2). For the style regressor, an fc(200)

connects the last convolution layer to the style parameters.

For the pose regressor, fc(5) is used instead. All but the first

convolution layers are batch normalized, and rectified with

LeakyReLU.

2. Appendix I.b. Training Details

p-TL Both the aligned shape autoencoder and the style/pose

regressors are trained with Adam optimizer at an learning

rate of 0.0003 and batch size of 100.

p-3D-VAE-GAN We follow [4] in training the 3D-VAE-

GAN. We replace the L2 voxel-wise reconstruction loss de-

scribed in [5] with the L2 loss between the last layer convo-

lution features in the discriminator. We use RMSProp with

a learning rate of 2e-5 and and batch size of 100 in train-

ing the 3D-VAE-GAN. The pose regressor is trained in the

same routine as in p-TL.

3. Appendix II. Fine-tuning Details

In fine-tuning, we fine-tuned all the parameters in

style/pose regressors, with an tiny learning rate of 1e-12.

Each batch is natural images with silhouette annotations,

mixed with rendered image-shape pairs. In this case, the

loss is composed of two parts with both weight of 1: repro-

jection loss for natural images, and loss in shape for natural

images (for p-VAE, this part is the euclidean loss in style

and pose; for p-3D-VAE-GAN, this part is loss of VAE-

GAN).

Fig. 1 gives an evaluation of the test 3D AP of pose-

aware shapes over the ratio of natural images in a training

batch. We may observe a relatively equivalent portion of

rendered and natural samples in a fine-tuning batch returns

the best AP, while too few natural images helps little in fine-

tuning, and too many natural samples easily lead to over-

fitting.

4. Appendix III. Reprojected Silhouettes as In-

stance Segmentation

In this section we showcase test results for MS COCO

dataset where reprojected silhouettes from our pose-aware

shape reconstruction could be used as instance segmenta-

tion, similar to the practice in [6]. We list 20 samples

for each of the three categories: aeroplane, chair, car in

Fig. 2 3 4, respectively.
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Figure 1: 3D AP as a function of ratio of natural images

in a training batch, averaged over both approaches and all

categories.
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Figure 2: Reprojected silhouette as instance segmentation (aeroplane). For each sample we show the input image (left),

ground truth segmentation (middle left), reprojected silhouette(middle right), and reconstructed pose-aware shape(right).



Figure 3: Reprojected silhouette as instance segmentation (chair). For each sample we show the input image (left), ground

truth segmentation (middle left), reprojected silhouette(middle right), and reconstructed pose-aware shape(right).



Figure 4: Reprojected silhouette as instance segmentation (car). For each sample we show the input image (left), ground

truth segmentation (middle left), reprojected silhouette(middle right), and reconstructed pose-aware shape(right).


