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Abstract

We propose a fully automatic system to reconstruct and

visualize 3D blood vessels in Augmented Reality (AR) sys-

tem from stereo X-ray images with bones and body fat. Cur-

rently, typical 3D imaging technologies are expensive and

carrying the risk of irradiation exposure. To reduce the po-

tential harm, we only need to take two X-ray images before

visualizing the vessels. Our system can effectively recon-

struct and visualize vessels in following steps. We first con-

duct initial segmentation using Markov Random Field and

then refine segmentation in an entropy based post-process.

We parse the segmented vessels by extracting their center-

lines and generating trees. We propose a coarse-to-fine

scheme for stereo matching, including initial matching us-

ing affine transform and dense matching using Hungarian

algorithm guided by Gaussian regression. Finally, we ren-

der and visualize the reconstructed model in a HoloLens

based AR system, which can essentially change the way

of visualizing medical data. We have evaluated its perfor-

mance by using synthetic and real stereo X-ray images, and

achieved satisfactory quantitative and qualitative results.

1. Introduction

Over years, advanced Augmented Reality (AR) and Vir-

tual Reality (VR) techniques have been utilized to train

surgeons, prepare operation procedure, improve the diag-

nosis, provide intraoperative data[3] and even remote ex-

amination [22]. The VR system provides stereoscopic 3D

visualization of vascular [3], micro calcifications [9], liver

[20] etc. which could be rotated, translated and zoomed by

the user in an immerse environment. When detecting the

offending vessels in neurovascular compression syndrome,

AR/VR system has offered significantly improvement over

traditional 2D images [14].

As shown in Fig.1, we propose a novel hololens1 based

AR system that reconstructs and visualizes 3D structure of

blood vessels to facilitate the medical research. Visualiza-

tion of vessels would allow practitioners to establish correct

diagnosis and further reduce the threat of diseases like car-

diovascular and cancer [2, 21]. To reconstruct blood ves-

sels in 3D, current methods usually use 3D volume data

captured by computed tomography angiographic (CTA) or

magnetic resonance imaging (MRI). Since CTA typically

requires multiple X-ray scans of the target area, whose ra-

diation exposure is much larger than that of single X-ray

imaging. Methods like biplane angiography usually need

pre-defined models or use adopt point-based reconstruction

methods in the absence of complex background [7, 11]. In

recent years, simpler imaging systems have been developed.

For example, Hoshino et al [12] proposed an X-ray stereo

imaging system that can record simultaneously X-ray stereo

images using two beam paths. Though this system can eas-

ily take X-ray stereo images, it further requires a stereo

matching method that reconstruct 3D vascular structures

from two images. However, vessel detection and matching

1https://www.microsoft.com/en-us/hololens
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(a) HoloLens system (b) Virtual blood vessel from z-axis (c) Virtual blood vessel from y-axis

Figure 1: Visualized 3D blood vessels in our Augmented Reality system

Figure 2: a. Equipment for stereo X-ray images. b. System workflow with examples for each steps

in the presence of complex background itself is extremely

challenging.

We illustrate our pipeline in Fig.2. The X-ray imaging

system, based on the Softex C2 system, used in this work is

shown in Fig.2. With the planner detector and object fixed,

we capture a pair of stereo images by moving the X-ray tube

from position -a and +a. From raw stereo X-ray images,

we automatically reconstruct the 3D vessels in the follow-

ing four step: 1. Given a pair of X-ray images with com-

plex background of vessels (Fig.2.b1), we first apply vessel

2http://www.softex-kk.co.jp/

segmentation to extract centerlines (red and blue label in

Fig.2.b2). 2. Stereo matching is then conducted to match a

pair of vessel centerlines (Fig.2.b3). Specifically, this step

can be divided into initial matching and dense matching.

Initial matching (Fig.2.b3-left) only matches bifurcations

using affine transform generated by SIFT [17] on raw im-

ages. 3. Dense matching uses the Hungarian algorithm with

Gaussian regression [23] to assign each pair of correspon-

dence along every edge linking between two matched bifur-

cations, as shown as green lines in Fig.2.b3-Right. 4. Using

the correspondence disparity in two stereo images, we can

generate 3D point clouds and further render 3D vessel mod-
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els as shown in Fig.2.b4. Finally we establish a HoloLens

based AR system (Fig.1.a) which allows user to view the

reconstructed 3D vessels in an interactive immerse virtual

environments. Users can rotate the model and check the

vessel structure from different views (Fig.1.bc)

In this paper, we have following four major contribu-

tions:

1. We develop an effective segmentation method to detect

vessels under complex background mixed with bones

and body fat.

2. By properly parsing the 2D vascular structure, we pro-

pose a new stereo matching method that outperforms

the state-of-the-art.

3. Our stereo based system could obtain 3D vascular

structures, with much less health risk due to radiation

exposure, shorter imaging time and significantly sim-

plified procedures.

4. The reconstructed 3D models could be visualized in

AR system.

2. Robust Segmentation of Blood Vessels under

Complex Background

Segmentation is an essential step to extract the vessel

from an input raw image. We apply a Contrast Limited

Adapted Histogram Equalization (CLAHE) [24] method,

then we apply Markov Random Field [13] to divide the en-

hanced image into several segmentations with labels. Based

on the observation from raw images that vessel regions con-

tribute slightly higher intensity, we look for pixels with high

intensity and associate them with segmentation labels. The

majority of labels in this set indicates the label of segmen-

tation for vessel regions.

Blood vessel segmentation has been studied for many

years. One of the widely used vessel segmentation methods

is proposed by Frangi et al. [10] that measures the vessel-

ness by computing the eigenvalues of Hessian at a certain

scale. The possibility of tubular structure is the maximum

vesselness response across several selected scales which

could be automatically determined by [18] using Markov

random field (MRF). However, existing Frangi filter [10]

and its combination with MRF [18] suffer from two limita-

tions, especially in current application: 1. Low vesselness

response at vessel bifurcations where shapes are complex as

illustrated in the yellow box in Fig.3.d. 2. High vesselness

response at background bone edge due to its high intensity

illustrated in the green box in Fig.3.d and Fig.3.e.

Since these two types of errors would seriously spoil the

succeeding stereo matching and 3D reconstruction steps de-

scribed in Sec3, our segmentation method can reliably en-

hance the vessel from complex background such as high

intensity bones. Adaptive Histogram Equalization (AHE)

enhances the contrast between bones and vessels by ampli-

fying the vicinity of each pixel by its neighborhood cumula-

tive distribution function (CDF). Since some noise may also

be over amplified, CLAHE further limits the CDF, to help

equally redistribute among all histogram bins.

To further remove the noise such as bone edges and tiny

vessels, we conduct series of entropy based morphological

post-process. The vessel should show relative lower entropy

because it is usually smoother than the bone. Therefore,

we compute the local entropy on the raw image masked

by initial segmentation and remove any pixel that has high

entropy. This would also help us to remove thin vessels

since vessel edges also have high entropy. The minimum

thickness of the reconstructed vessel depends on the seg-

mentation and smoothing process. Then we only extract

largest segmentation and fill holes through a morphological

reconstruction algorithm in Matlab toolbox [16]. Finally,

fine vessel centerlines are generated using thinning rule in

[15]. A graphic tree for each vessel centerline, which is rep-

resented by bifurcation nodes and edge nodes, is generated

by a graph-based tracing method proposed by [8].

3. 3D Reconstruction of Blood Vessels

In order to get 3D model of the blood vessel, we first do

stereo matching in a coarse-to-fine scheme. In the initial

matching, we match bifurcations using affine transform and

then obtain dense correspondences using Hungarian Algo-

rithm. We are able to reconstruct the correspondences in 3D

point clouds and then render them into 3D models.

3.1. Stereo Matching

Stereo Matching involves two steps: Initial Matching for

bifurcations and Dense Matching for all the other nodes.

Let P and Q represent bifurcation sets on warped image and

target image, pi and qi represent bifurcation i on warped and

target image.

3.1.1 Initial Matching:

In order to predict the correspondences on target image, we

first calculate 3 × 3 affine transform using SIFT [17, 4] on

the raw image. At each bifurcation (px, py) on warped im-

age, we predict its correspondence (q′x, q′y) (Fig4.a). We

use homogeneous coordinates to represent affine transform

in a 3× 3 matrix and homogeneous vector for each bifurca-

tion pixel:




q′x
q′y
1



 =

[

R T

0 1

]





px
py
1



 (1)

where R is a 2× 2 rotation matrix while T is a 2× 1 trans-

lation vector. For each prediction, we then search for it’s

101



Figure 3: Segmentation Evaluation using Different Methods. a: raw image. b. Initial Segmentation using CLAHE and MRF.

c: MRF. d:Frangi Filter e:MRF multi-label Optimization.

Figure 4: Stereo Matching Process. a. Initial prediction of corresponding bifurcation nodes using affine transform. b. Search

for bifurcation nodes with minimum euclidean distance on targeted tree. Initial alignment.Blue dots represent warped image

while red dots represent target image. c. Junction nodes matching. d. Remove branches with unmatched bifurcations

nearest bifurcation in Q within a range r (Fig.4b,c). We then

remove edges between each unmatched bifurcation and it’s

connected terminal nodes (Fig.4.d) and finally update trees

for two images with NJ matched bifurcations.

3.1.2 Dense Matching:

The matched bifurcations suggest an initial mapping be-

tween two trees. A fine alignment approach using Hungar-

ian algorithm guided by Gaussian regression was proposed

by [23] to establish new matches between the edge points

of the two paths. If we define the tree of warped image and

targeted image as XA and XB, then the correspondence set

can be written as: π = {xA
i ↔ xB

i }1 ≤ i ≤ N , N is the num-

ber of correspondence. Use Gaussian non-linear regression,

we can predict the location of new correspondence of points

in XA by:

mπ(x
B) = kT C−1

π XA
π ,

σ2(xB) = k(xB , xB) + β−1 − kT C−1

π k

where β is the measurement noise variance, k is a non-linear

kernel function defined by Eq.2 and Cπ is N × N matrix

with element Ci,j = k(xB
i , x

B
j ) + β−1δi,j , k is the vector

[k(xB
1
, xB), ..., k(xB

N , xB)]T , with the kernel defined as

k(xi, xj) = θ0 + θ1x
T
i xj + θ2 exp {−

θ3

2
‖xi − xj‖

2} (2)

which can implicitly define a mapping function consist of

both non-linear and affine transform in biomedical warping.

Here θ0, θ1, θ2 and θ3 are hyperparameters, which are used

for adjusting deformation weights.
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Figure 5: 3D reconstruction from stereo X-ray images of human hand. We first use CLAHE based MRF to segment blood

vessels, and then extract largest connected segment and finally do standard morphological dilation and filling holes proce-

dures.

We initialize the mapping using NJ sets of correspon-

dences from initial matching: π = {pi ↔ qi}1 ≤ i ≤ NJ
.

Following steps of fine alignment in [23], for each pair of

edges connected by matched bifurcation, we find new cor-

respondences. To evaluate dense mapping, we calculate the

Euclidean distance between the point and its predicted cor-

respondence. We associate it with Hungarian matrix and by

finding minimum total cost and finally obtain dense match-

ing [23].

3.2. Reconstruction

After we get correspondences: π = {xA
i ↔

xB
i }1 ≤ i ≤ N , we estimate each point in world coordinate

XA
w and XB

w using intrinsic matrix of the camera M, pro-

vided by the manufacturer:

Xw =





xw

yw
1



 = M−1





xi

yi
1



 (3)

As shown in Fig.2a, we assume X-ray light rail is parallel to

image plane. If we define hx is the height of X-ray source,

hs is the height of the samples, and depth z is hx-hs, we can

get Eq.4 based on similar triangles theorems:

2a

d
=

hx− hs

hs
=

z

hx− z
(4)

where d is the distance between two correspondences. Since

two X-ray lights are symmetric to the sample position, fi-

nally we estimate a 3D point [x, y, z]T as:





x

y

z



 =
1

2
× (XA

w + XB
w) +







0
0

2a×
hx

d+ 2a
− 1






(5)

We further smooth the reconstruction by averaging depth

within a step size along each branch in the 3D tree. We ap-

proximate the blood vessels as a series of small cylinders

and thus described by SWC format, a widely used format to

define the neuron and vessel structure. At each node of the

vessel model, the radius vessel can be calculated by search-

ing the first non-vessel pixel along the normal vector in the

segmentation. Finally, 3D rendering is done by approxi-

mating a cylinder with estimated radius at each connection

between two adjacent nodes in the tree. This step is done in

Matlab Trees Toolbox.

4. Visualizing 3D Models using Augmented Re-

ality System

4.1. HoloLens System

Augmented reality headsets, such as Microsoft

HoloLens [1], move data visualization from 2D screen to

3D hologram-like interface. It can project a mixed-reality

overlay on real world, and may lead to a large impact in

medical applications. To facilitate the diagnosis, we import

the reconstructed 3D vessel model in the virtual reality

system where doctors could view the vessel of interest in

any angle.

In order to visualize vessel, after computing the recon-

structed data from stereo X-ray images, we would upload

the 3D vessel model into the cloud and import into 3D

viewer beta in HoloLens. Specifically, since the HoloLens

system visualizes the target by rendering the 3D model of

fbx format in front of the user, we have to build the model

in DXF file format before converting into fbx 2013 format.

Finally, as shown in Fig.1, users could rotate, zoom, and

move the reconstructed vessels from raw images to better

assist doctors’ work.
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Figure 6: Experiments on 5 X-ray stereo images with bones. The first line shows 5 raw images, the second line shows their

corresponding 3D rendering results using our method

Figure 7: Synthetic Experiments: First row: Ground truth generated by Matlab Tree Toolbox. Second row: 3D reconstruction

using our system.

5. Experiment

5.1. 3D Vessel Reconstruction and Visualization
from Xray Stereo Images

To begin with, we demonstrates the results of our sys-

tem on real world data collected by our X-ray imaging

equipment (Fig.2.a) for clinic practice. In Fig.5, we can

observe that the raw input images contain a huge portion

of bone in the background. The vessels also assume lit-

tle surface texture, which would frustrate existing standard

stereo matching methods, either sparse or dense. Our ves-

sel segmentation method successfully localizes main ves-

sels despite the presence of complex background. We first

apply CLAHE on two stereo X-ray images and use MRF

for multi-labeled segmentation. We search for pixels with

highest intensity from raw images and associate them with a

MRF label. Then we only extract pixels with that label and

remove small segments by extracting largest connected pix-

els. Finally, we do dilation and fill holes in order to get tree

structures. Our stereo matching and reconstruction method

captures the disparity properly, and the reconstructed 3D

vessels look reasonable and satisfactory. We also show our

reconstruction results in five small regions from X-ray im-

ages in Fig.6. Our system works well for large and less oc-
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Figure 8: Accuracy Evaluations for our method, CPD and ICP and fullflow.

cluded vessels. However, due to the restriction of view an-

gles, it may fail for heavily occluded vessels. In our dataset,

the minimum thickness of vessels is about 10 pixels.

5.2. Quantitative Evaluation of Stereo Matching

To evaluate the accuracy of our novel stereo matching

algorithm, we compare our results with CT scan. A z-slice

image (512) was reconstructed from the 2496 signals cap-

tured by 64 array sensor (GE Discovery CT750 HD). We

simulate a pair of stereo images by projecting the 3D vol-

ume data into two planes. Due to high occlusion of bones

and low resolution, we manually segment vessels and test

accuracy of method in section 4.2. We associate our points

with nearest human-labeled points on 2D CT image and

evaluate each depth accuracy. We only care about the rela-

tive depth in this test so both CT and our results are normal-

ized. We compare our results with state-of-art stereo match-

ing methods: Fullflow [6] and the other non-rigid point

matching methods including Coherent Point Drift (CPD)

[19] and Iterative Closest Point (ICP) [5]. At each point,

we define error as e% = |Depth−GT |
GT

, where depth is the

calculated depth result z while ground truth is depth ob-

tained by CTA. For each method, we calculate the average

error of all the points:

√

n∑

i=1

e2
i

n
, n is the number of points.

Fig.8 is the error histogram, which is generated by counting

how many points have errors within this value. We achieve

72.6% points with less than 30% error, with an average ac-

curacy of 71.8%.

5.3. Synthetic Experiment

We also design four synthetic vessel skeletons and ren-

der them as ground truth in Matlab Trees Toolbox as shown

in Fig.7. We define locations of nodes and width of ves-

sels and connect them by cylinders. In order to validate

the robustness of our reconstruction system, we specifically

introduce several corners and large angle in the synthetic

vessels which is challenging for stereo vision. We simu-

late the experiment based on the principle of our equipment

and project the 3D skeleton model into two stereo images.

Because the projected stereo skeleton might be sparse, we

further generate fine centerlines using morphological pro-

cess. Using methods described in Section3, we generate

corresponding 3D models and compare them with ground

truth qualitatively.

6. Conclusion

In this paper, we propose an Augmented Reality (AR)

system to reconstruct and visualize 3D blood vessels from

stereo X-ray image under complex backgrounds. Our

system could obtain 3D vascular structures, with much

less health risk due to radiation exposure, shorter imaging

time and significantly simplified procedures. Comparing

with state-of-the-art, our novel stereo matching algorithm

achieves a higher accuracy on both real and synthetic data.
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