
Bots for Software-Assisted Analysis of Image-Based Transcriptomics

Marcelo Cicconet∗, Daniel R. Hochbaum†, David L. Richmond‡, and Bernardo L. Sabatini§

Harvard Medical School, Boston, MA

Abstract

We introduce software assistants – bots – for the task of

analyzing image-based transcriptomic data. The key steps

in this process are detecting nuclei, and counting associ-

ated puncta corresponding to labeled RNA. Our main re-

lease offers two algorithms for nuclei segmentation, and

two for spot detection, to handle data of different complexi-

ties. For challenging nuclei segmentation cases, we enable

the user to train a stacked Random Forest, which includes

novel circularity features that leverage prior knowledge re-

garding nuclei shape for better instance segmentation. This

machine learning model can be trained on a modern CPU-

only computer, yet performs comparably with respect to a

more hardware-demanding state-of-the-art deep learning

approach, as demonstrated through experiments. While the

primary motivation for the bots was image-based transcrip-

tomics, we also demonstrate their applicability to the more

general problem of scoring “spots” in nuclei.

1. Introduction

Image-based transcriptomics is a burgeoning field of re-

search with applications from basic cell biology [4, 10] to

systems neuroscience [25, 22]. In situ imaging methods for

scoring1 fluorescently labeled RNA transcripts are attractive

tools for studying biological tissues with complex and het-

erogeneous spatial environments that can signal and shape

gene expression in single cells. However, scoring the num-

ber of fluorescently labeled RNA in each cell in a tissue

∗HMS Image and Data Analysis Core. Corresponding author for soft-

ware and image analysis matters, such as the machine learning model.

cicconet@gmail.com
†HMS Department of Neurobiology, Harvard University Society of

Fellows, and Howard Hughes Medical Institute. Corresponding author for

all experimental considerations, such as microscopy and in situ techniques.

drhochbaum@gmail.com
‡HMS Image and Data Analysis Core.
§HMS Department of Neurobiology, and Howard Hughes Medical In-

stitute.
1Scoring refers to counting the number of puncta, potentially in mul-

tiple different channels, associated with each nucleus. Puncta refers to

point-like objects, which can be diffraction limited or not. When diffrac-

tion limited, they are also sometimes called “point sources”.

remains a challenging bio-image analysis task.

Generally speaking, scoring fluorescent puncta in nuclei

requires the combination of two independent image pro-

cessing pipelines – one for nuclei segmentation, and one

for puncta detection. Each pipeline presents its own inher-

ent complexities: nuclei segmentation is a challenging case

of instance segmentation [23], which requires both labeling

pixels belonging to nuclei, as well as separating touching

nuclei. Spot detection is also a challenging task under low

signal-to-noise ratio conditions [1]. Currently, cell segmen-

tation is most often achieved either by painstaking manual

segmentation of fluorescent, DAPI-stained cell nuclei [22],

or by narrowly defined and carefully tuned algorithms that

are not readily generalizable or suitable for in vivo measure-

ments [4], where cells can be clumped or clustered.

Here we present an open source pipeline for automated

cell segmentation and puncta scoring. The pipeline relies

on a stacked Random Forest model for challenging nuclei

segmentation, and provides robust results, even with a small

training set. We introduce novel “circularity features” to the

stacked Random Forest model, to leverage the prior knowl-

edge that nuclei are approximately spherical, such that the

stacked Random Forest can learn to split touching nuclei.

Our stacked Random Forest model with circularity features

achieves a performance matching the popular U-Net model

for nuclei segmentation, in a lightweight model that can be

trained and run on CPU.

We make our solution available by way of bots, or soft-

ware assistants, developed in Matlab. Bots use minimal-

istic GUI elements to guide the user through setting the

various image-processing parameters. SpotsInNucleiBot

(SNB), our main release, allows the user to set, load, and

save parameters for segmenting nuclei, detecting puncta,

and associating the two objects together (see Figure 1 for

screenshots and sample workflow). It allows scoring one

stack at a time, or its “headless” version can be used to

score a folder of images as a traditional script on a PC or

server. SNB offers two options for nuclei segmentation,

and two for point-source detection, permitting a more ad-

equate handling of data of different complexities. A basic

algorithm can be used for simple, fast segmentation when

the signal-to-noise ratio is high. For more challenging nu-

1134

clei segmentation cases, SNB uses the multi-layer Random

Forest model for pixel classification, followed by watershed

segmentation of the resulting class probability maps. Both

image annotation and model training can be done with an

accompanying NucleiSegmentationBot (NSB).

In addition to the SNB and NSB development, we are

also releasing bots for estimating the parameters of individ-

ual puncta, building stacks from image planes, and visual-

izing stacks2. Source code for the Random Forest classifier

using circularity features is also available independently3.

We hope that the resource presented here will be useful for

rapid hypothesis testing and validation for the increasingly

diverse array of transcriptionally-defined cell types within

complex tissues.

2. Related Work

There are many works addressing the task of nu-

clei segmentation in bio-image analysis. Methods based

on classical computer vision include automatic thresh-

olding [17, 19] combined with morphological operations,

marker-controlled watershed [16, 27], active contours and

level sets [9, 14], and model-based approaches such as the

generalized hough transform [12, 3]. More recently, Deep

Learning has dominated the field of semantic segmenta-

tion [15, 20], including instance segmentation [7, 2], when-

ever a large amount of annotated training data is avail-

able. We provide two methods for nuclei segmentation with

our bots: thresholding-based segmentation for simple cases

(e.g., well separated nuclei), as well as a Machine Learn-

ing based approach for more challenging cases frequently

occurring in complex tissues. For the Machine Learning

method, we chose to use a stacked Random Forest model

as the classification back-end, rather than a Deep Learning

model such as U-Net [20], because we wanted to develop a

tool that non-experts could apply to their own data, without

the need for specialized hardware.

Stacked classifiers have been shown to perform well

when additional, domain-specific features are derived from

the prediction of the classifier at each level in the stack. For

example, in the Auto-context model, new features are gen-

erated by sampling predictions over a contextual grid, and

as a result the stacked classifier is able to learn stereotypical

class layouts [26]. This approach has been applied to nu-

merous different tasks, including facade segmentation [11],

and bio-medical image segmentation [13, 18]. Here we

adapt this idea to address the challenge of splitting touch-

ing nuclei by introducing “circularity features” that lever-

age prior knowledge of nucleus shape to better identify their

boundaries.

2Code, sample datasets, and video tutorials, are available at https://hms-

idac.github.io/MatBots/
3 https://hms-idac.github.io/MLRFSwCF/

There are numerous software packages for creat-

ing pipelines with segmentation and detection, such as

FIJI [21], Cell Profiler [5], ICY [8] and many more. We

opted to construct assistive bots in Matlab based on (i) our

pre-existing code base in Matlab for puncta detection, (ii)

rapid development and quantitative evaluation of circular-

ity features in the stacked Random Forest model, and (iii)

ease of developing custom bots for every step in the work-

flow, such as annotation and parsing of annotations into la-

bel maps.

3. Workflow and Algorithms

Figure 1 illustrates a typical workflow in SpotsInNucle-

iBot (SNB). In essence there are four tasks: (1) load stack,

(2) set up segmentation parameters, (3) set up spot detection

parameters, (4) score folder.

We provide two algorithms for Task (2): Simple Thresh-

old (which is described in Subsection 3.1), and Machine

Learning (Subsection 3.2). We also provide two algorithms

for Task (3): LoG (as described in Subsection 3.3) and Ad-

vanced LoG (Subsection 3.4).

Each choice leads to subsequent mini-apps where param-

eters can be tested, except for the Machine Learning option,

where the user is asked to load a trained model for nuclei

segmentation. Such training (and related setting of parame-

ters) are performed in the accompanying NucleiSegmenta-

tionBot (NSB).

In summary: for easy nuclei segmentation cases, the user

can perform all scoring with SNB. When nuclei segmenta-

tion is difficult, the user first trains a nuclei segmentation

model via NSB, then loads that model by choosing the Ma-

chine Learning option when setting up scoring in SNB.

3.1. Basic Nuclei Segmentation

1. Let I be the nuclei channel. Set I ′ = gσ ∗ I , where gσ
is a Gaussian kernel of standard deviation σ.

2. Set I ′′ = (I ′ > tb), i.e., I ′′ is the mask corresponding

to pixels in I ′ with value above tb. This is the fore-

ground (nuclei minus contours) mask.

3. Set D as the distance transform of 1− I ′′.

4. Set S = n(−D), where n is the linear mapping to

[0, 1]. S is the raw surface for watershed segmentation,

to be refined in the next steps.

5. Set S′ = hth(S), where hth is the H-minima trans-

form [24] with parameter th.

6. Set S′(1 − I ′′) = −∞ (here we are using logical in-

dexing notation, i.e., setting S′(x) = −∞ for every

pixel x where I ′′ = 0). This lets the watershed algo-

rithm know that the background class should be sepa-

rate from the nuclei object classes.

135

Figure 1. SpotsInNucleiBot sample workflow. The bot assists the user by asking questions via basic dialog windows. It also includes

mini-apps (such as the Segmentation and Spot Detection windows above) that allow the user to experiment with parameters. Not shown is

the Figure window, that displays the current image plane being analyzed, along with possible mask overlays (when that option is selected).

136

7. Apply the watershed algorithm on S′.

3.2. Supervised Nuclei Segmentation

3.2.1 Multi-Layer Classifier

Let {(In, Ln) : n = 1, ..., N} be a training set, i.e., a

set of image/label pairs, where In, Ln are 2D tensors, I a

grayscale image, and L a corresponding label map. We use

three labels: background, nucleus contour, and nucleus.

The goal is to learn a multi-layer classifier f that predicts

L given I . The multi-layer classifier is composed of a se-

quence of intermediate classifiers f i, where the superscript

i indicates the layer index. Each intermediate classifier f i

attempts to predict Ln based on two types of features: im-

age features {F}i – computed directly from In, and prob-

ability map features {G}i – computed from the predictions

{P}i−1 of classifier f i−1. The notation {X} indicates a set

of distinct features, each of which is referred to as X . For

example {F}1 is a set of features computed from an input

image, such as derivatives at different directions and scales.

The procedure for training a classifier is as follows:

1. Compute image features {Fn}
1 from In, ∀n. Learn a

classifier f1 to predict Ln. The classifier outputs prob-

ability maps P 1

n .

2. Compute probability map features {Gn}
2 from P 1

n ,

∀n. Learn a classifier f2 to predict Ln, based on both

{Fn}
2 and {Gn}

2.

3. Repeat step 2 recursively. The number of executions

of step 2, plus one, is referred to as the number of the

layers of the stacked classifier.

4. Convert the final probability map {Pn}
î to objects

(see 3.2.3 for details). Here î is the index of the last

layer.

After tests with a number of different image features, and

considering the trade-off between classifier accuracy and

computational cost, we settled on features based on image

derivatives, up to second order, in different scales. Using 5

different scales (spaced exponentially), this corresponds to

40 features (for each scale there are 8 features: I , ∂xI , ∂yI ,

∂xxI , ∂xyI , ∂yyI , and the two eigenvalues of the Hessian

matrix of I). Notice that some of these features, such as the

eigenvalues and second derivatives, capture some geometry

of the nuclei shapes. For example, at large scales, nuclei

are seen as local maxima of the second derivatives. These

are, however, different from circularity features (see 3.2.2),

which are meso-scale shape features, with the scale set by

the size of the objects.

We compute three types of features from probability

maps: edge likelihoods, offset features, and circularity

features. Edge likelihoods4 are computed from the fore-

ground probability maps, meaning the probability maps

corresponding to nuclei (interior, not contour). Edges are

computed via wavelets (according to the maximum magni-

tude response of a bank of wavelets with fixed magnitude

and different orientations equally spaced in [0, 2π). Fig-

ure 3 (c) shows an example.

Offset features are computed as in [26]. For a set of

offsets d ∈ {d1, ..., dM} and angles α = {k 2π
K

: k =
0, ...,K−1}, we translate P i

n by d · (cosα, sinα). We used

a small number (3) of offsets d up to the estimated radius of

a small nucleus, and set K = 8. This adds 72 features to

the model.

Finally, we add circularity features, as defined in the next

subsection.

3.2.2 Circularity Features

Let Cr
0
(x, y) be the likelihood that there is a circle of radius

r centered at coordinates (x, y) in the image. Cr
0

can be

computed via the circular Hough Transform, or any of its

variations (we use [6]).

Cr
0

is not a good feature for nearly (including perfectly)

circular objects because it is only prominent at the center

of such objects – ideally we want a feature that labels all

pixels in a circle, or its boundary, not just the center. But

from Cr
0

we can infer likelihoods of boundaries (which we

call circumference likelihoods), by accumulating drawings

of circumferences of radii r centered at (x, y) with strength

(pixel value) Cr
0

. Similarly, we can infer the likelihoods of

interiors (circle likelihoods), by accumulating drawings of

circles.

To improve computation time, one can choose to use

only center likelihoods Cr
0
(x, y) above a certain threshold,

and only draw a “dense enough” subset of interior (circle)

pixels for each chosen center likelihood, and use blurring

to “fill in” the gaps. This choice depends on computation

time and on how well the feature reconstructs the circle/cir-

cumference. In addition, we can add circles and circumfer-

ences for multiple center likelihoods (of different radii) in

the same accumulator space. The entire algorithm is shown

in Figure 2, and some examples are shown in Figure 3.

In the experiments, we used a total of 3 pairs (pair = cir-

cle+circumference) of circularity features for 3 radii around

the estimated radius of a nucleus.

4The term “likelihood” is sometimes used instead of “feature.” A likeli-

hood is simply a feature with some geometric meaning. For example, edge

likelihood is a feature where higher values represent higher likelihood that

there’s an edge at the corresponding point in the image. The edge likeli-

hood is a combination of features given by edge filters in all directions.

137

1 f u n c t i o n [C1 , C2] = c i r c l i k l (I , r a d i i , sc , nor , t h r , pd)
2
3 C1 = z e r o s (s i z e (I)) ;
4 C2 = z e r o s (s i z e (I)) ;
5 f o r r = r a d i i
6 A = c i r c c e n t l i k l (I , r , sc , nor) ;
7 Cr1 = z e r o s (s i z e (A)) ;
8 Cr2 = z e r o s (s i z e (A)) ;
9 [r s , c s] = f i n d (A > t h r) ;

10 f o r k = 1 : l e n g t h (r s)
11 f o r a = 0 : 1 / r :2∗ pi −1/ r
12 x = round (r s (k)+ r∗cos (a)) ;
13 y = round (c s (k)+ r∗ s i n (a)) ;
14 i f x >= 1 && x <= s i z e (I , 1) && . . .
15 y >= 1 && y <= s i z e (I , 2)
16 Cr1 (x , y) = Cr1 (x , y)+A(r s (k) , c s (k)) ;
17 end

18 end

19 r r s = 1 : r ;
20 r r s = r r s (rand (1 , r) < pd) ;
21 f o r r r = r r s
22 as = 0 : 1 / r r :2∗ pi −1/ r r ;
23 as = as (rand (1 , l e n g t h (a s)) < pd) ;
24 f o r a = as
25 x = round (r s (k)+ r r ∗cos (a)) ;
26 y = round (c s (k)+ r r ∗ s i n (a)) ;
27 i f x >= 1 && x <= s i z e (I , 1) && . . .
28 y >= 1 && y <= s i z e (I , 2)
29 Cr2 (x , y) = Cr2 (x , y)+A(r s (k) , c s (k)) ;
30 end

31 end

32 end

33 end

34 C1 = C1+Cr1 ;
35 C2 = C2+Cr2 ;
36 end

37 C1 = n o r m a l i z e (C1) ;
38 K = f s p e c i a l (’ g a u s s i a n ’ ,4∗ [s c sc] , s c) ;
39 C2 = n o r m a l i z e (i m f i l t e r (C2 ,K)) ;
40
41 end

Figure 2. Circularity features algorithm in Matlab. Inputs. I:

image; radii: list of radii; sc: scale of wavelets used in

circcentlikl (line 6) and for smoothing circle accumu-

lator space (line 39); nor: number of orientations used by

circcentlikl; thr: threshold for contributing with circum-

ference/circle; pd: pixel density for drawing circle. Outputs. C1:

circumference likelihood; C2: circle likelihood. Variation. In the

applications we actually replace line 34 with C1 = C1+Cr1-A:

this in some case helps reducing clutter at the center of circles. De-

pendencies. circcentlikl, as the name suggests, computes

circle center likelihoods (see [6]); normalize sets the image into

range [0, 1].

3.2.3 From Probability Maps to Objects

We now give more details on step 4 of the pipeline described

in Subsection 3.2.1.

For simplicity, let’s call P the final probability map of

step 3 in that pipeline. P is a 3D tensor, {Pi,j,k : i =
1, ...,m; j = 1, ..., n; k = 1, 2, 3}, where m and n are the

height and width of the image, respectively. Lets call Pk the

k-th slice of P along the 3rd dimension: Pk = {Pi,j,k∀i, j}.

Thus, P1, P2, and P3 are probability maps for the back-

ground, nucleus contour, and nucleus body classes, respec-

tively.

Segmented objects are generated from P as follows:

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. Probability map features. (a) nuclei image; (b) fore-

ground (nuclei minus contours) probability map; (c) edge like-

lihood; (d,e,f) circumference likelihoods for r = 10, r = 20,

r = 10, 11, ..., 20; (g,h,i) circle likelihoods for the respective

radii. Notice how circumference features do a better job at high-

lighting the boundary between touching nuclei than edge features.

1. Set P ′
1
:= σ(P1), where σ(·) = gσ ∗ (·), is convolu-

tion with a Gaussian kernel with standard deviation 2

pixels.

2. Set P ′′
1
:= (P ′

1
> tb), i.e., P ′′

1
is the mask correspond-

ing to pixels in P ′
1

with value above tb. This is the

background mask.

3. Set P ′
3
:= σ(1− P3), where σ(·) is as above.

4. Set P ′′
3
:= hth(P

′
3
), where hth is the H-minima trans-

form [24] with parameter th.

5. Set P ′′
3
(P ′′

1
) = −∞. This lets the watershed algo-

rithm know that the background class should be sepa-

rate from the nuclei object classes.

6. Apply the watershed algorithm on P ′′
3

.

Notice that P2, the contour probability map, is not used

during post-processing. It still has an important role, how-

ever: we found that the Random Forest classifier pro-

duces better foreground (nuclei minus contours) maps when

trained with three classes (background, nuclei contour, nu-

clei interior) than when trained with only two (background

and nuclei).

138

3.3. Basic Puncta Detection

When the signal-to-noise ratio is high, a simple algo-

rithm based on the Laplacian of Gaussian (LoG) filter per-

forms quite well. It works as follows.

First we filter the puncta channel with a LoG kernel

of appropriate sigma (the SNB allows the user to estimate

sigma by simply drawing a box around a few puncta). Then

the intensities of the local maxima of the filtered image are

divided in two groups: those that intersect the nuclei mask,

and those that don’t. Robust mean m and standard devia-

tion s of the background puncta are computed. Finally, all

local maxima with intensities above m + ts, where t is a

user defined threshold, are considered puncta.

3.4. Advanced Puncta Detection

For low SNR cases we include a simplified version of

the method described in [1], where the amplitude and back-

ground are regressed at each local maximum by estimating

the amplitude of a fitting Gaussian centered on that location.

(For computational speed we omit the second step in which

all parameters of such fitting Gaussian are estimated.)

4. Nuclei Segmentation Experiments

In this section we describe experiments conducted to

evaluate the performance of the stacked Random Forest

method on segmenting nuclei. Other algorithms were not

evaluated either because they are standard for simple cases

(nuclei detection via thresholding and watershed, and LoG

spot detection) or have been published/evaluated elsewhere

[1].

The multi-layer Random Forest with circularity features

(RF+) was compared against a similar version without cir-

cularity features (RF), as well as U-Net, a state-of-the-art

Deep Learning architecture for semantic segmentation [20].

From a labeled set of 23 images containing a total of

about 2000 nuclei from slices of mouse cerebral cortex, we

obtained 93 non-overlapping patches (each with 360x360

pixels), which were split into training (60 images), valida-

tion (10 images) and test (23 images). This database is pub-

licly available5.

4.1. Evaluation

Nuclei segmentation is an instance-segmentation task:

not only we want to classify each pixel as belonging to nu-

clei or not, we also want to aggregate nuclei pixels in dense,

nearly circular nuclei instances. Critically, two touching nu-

clei should be identified as separate instances. In these types

of problems, an evaluation metric based on intersection over

union is best suited to evaluate performance.

Here we adapt what in [23] is defined as the Weighted

Coverage Score, normalizing it by the maximum weighted

5https://hms-idac.github.io/MLRFSwCF/

coverage score per image, so that the maximum is 1. We call

this measure the Normalized Coverage Score. It is defined

as follows:

Let G = {rG
1
, ..., rG|G|} be a set of ground truth regions

and S = {rS
1
, ..., rS|S|} be a set of proposed regions for a

given image. For a given pair of regions rj and rk, the

overlap between them is defined using the intersection over

union score: O(rj , rk) = (rj∩rk)/(rj∪rk). The weighted

coverage score, as defined in [23], is given by

Cw(G,S) =
1

|I|

|G|∑

j=1

|rGj |maxk=1,...,|S|O(rGj , r
S
k) ,

where |I| is the total number of pixels in the image and |rGj |

is the number of pixels in the ground truth region rGj . The

normalized coverage score is defined here as

Cn(G,S) = Cw(G,S)/Cw(G,G) .

Simple algebra shows this is equivalent to

Cn(G,S) =
1

∑|G|
j=1

|rGj |

|G|∑

j=1

|rGj |maxk=1,...,|S|O(rGj , r
S
k) .

4.2. Results

For each combination of parameters tb = k
20
, k =

1, ..., 9, and th = k
20
, k = 1, ..., 4 in the watershed post-

processing phase (Subsection 3.2.3), we computed coverage

scores for three classifiers: 3-layer Random Forests with

(RF+) and without (RF) circularity features, and a U-Net

with 3 downsampling (and upsampling) layers. We im-

plemented our own modified version of the U-Net so that

the output image is the same size as the input image. The

outputs (and ground truth) are filtered to remove: (i) ob-

jects that touch the border of the image, (ii) objects that are

smaller than a circle of radius half the smallest expected

circle or larger than a circle of radius twice the largest ex-

pected circle (such filtering alters the labels only minimally,

excluding small artifacts that appear at the intersection of

neighboring nuclei due to imprecise annotation), (iii) ob-

jects with more than 10% of their area intersecting a region

marked to be ignored.

Figure 4 shows coverage scores for fixed th and varying

tb, with background sampling restricted to regions near nu-

clei boundaries. Figure 5 shows a comparison of the outputs

of the three models.

We found that 3-layer Random Forests reached the opti-

mal trade-off between evaluation speed and accuracy on our

data, and the same held true for 3-layer U-Nets. For brevity,

we do not report results on other architectures.

139

Figure 4. Normalized coverage scores on the test set for models trained with a balanced number of samples per class, and background

samples taken near the boundary of nuclei (as exemplified in the 3 bottom images).

4.3. Applications

SpotsInNucleiBot is designed to work on any multi-

channel images containing, in one channel, roughly circu-

lar nuclei, and in the remaining channels, spot-like objects

(spots, point-sources, puncta) that can be approximated by

a 2D Gaussian of small standard deviation. To demonstrate

this flexibility, Figure 6 illustrates our approach applied to

two distinct bio-image analysis problems: RNA detection

in slices of mouse visual cortex, and protein detection in

human fibroblasts.

5. Conclusion

The task of segmenting nuclei and detecting associ-

ated fluorescently-labeled probes for DNA, RNA, or pro-

tein from light micrographs arises frequently in bio-image

analysis, and is essential for the rapidly growing field of

image-based transcriptomics. We present a user-assistive

approach to address this problem, based on the use of

“bots”. Specifically, we provide bots that assist in the pro-

cess of segmenting nuclei, estimating model parameters for

puncta detection, detecting puncta, and associating puncta

140

(a) (b) (c)

(d) (e) (f)

Figure 5. Example of segmentation outputs using different models,

trained with class balancing, and background class sampled near

nuclei boundaries, with post-processing parameters tb = 1/4 and

th = 1/5. (a) nuclei image; (b) ignore labels; (c) nuclei interior

labels; (d) output of Random Forest without circularity features;

(e) output of U-Net; (f) output of Random Forest with circularity

features.

to their corresponding nuclei.

Accurate segmentation of nuclei is particularly challeng-

ing due to the difficulty of separating tight clusters of nu-

clei commonly found in complex tissues. For these more

difficult segmentation scenarios, we provide a new method

based on stacked Random Forests. We introduce circularity

features to improve separation of touching objects, based on

an implicit shape model. This approach achieves compara-

ble performance to the state-of-the-art Deep Learning ap-

proach [20], without the requirement for specialized hard-

ware, empowering non-experts to train and apply this Ma-

chine Learning model on their own data.

The use of bots provides a flexible framework for incor-

porating new methods as they are developed by the large

academic community of computer vision and bio-image

analysis experts programming in Matlab. Bots for detection

of other biologically relevant substrates could be easily in-

tegrated into this pipeline, and new pipelines can be quickly

assembled using our segmentation and detection bots.

6. Acknowledgements

We would like to acknowledge the Harvard Medical

School Tools and Technology fund, as well as the William

F. Milton fund, for supporting this research. We also thank

Joseph Cabral and David Knipe, Department of Microbiol-

ogy and Immunobiology, Harvard Medical School, for pro-

viding the micrographs in Figures 6 (d,f), prepared as a part

of research supported by NIH grant AI106934.

(a) (d)

(b) (e)

(c) (f)

Figure 6. Applications to diverse samples and probed substrates.

Left column: a slice of mouse visual cortex (a) and the output

nuclear segmentation (b) and puncta detection of fluorescently la-

beled Egr1 RNA (c) for selected ROI shown in (a). Right column:

Human fibroblasts (d) and the output segmentation (e) and protein

puncta detection with a fluorescently labeled antibody for ATRX

protein (f) for selected ROI shown in (d). Nuclei segmentation

in (b) is performed via Machine Learning, and in (e) via Simple

Threshold. Spot detection in (c) uses the Advanced LoG option,

while simple LoG was used in (f).

References

[1] F. Aguet, C. N. Antonescu, M. Mettlen, S. L. Schmid, and

G. Danuser. Advances in analysis of low signal-to-noise im-

ages link dynamin and ap2 to the functions of an endocytic

checkpoint. Developmental cell, 26(3):279–291, 2013. 1, 6

[2] A. Arnab and P. H. Torr. Bottom-up instance segmentation

using deep higher-order crfs. In British Machine Vision Con-

ference, 2016. 2

[3] D. Ballard. Generalizing the hough transform to detect ar-

bitrary shapes. Pattern Recognition, 13(2):111–122, 1981.

141

2

[4] N. Battich, T. Stoeger, and L. Pelkmans. Control of transcript

variability in single mammalian cells. Cell, 163(7):1596–

1610, 2015. 1

[5] A. E. Carpenter, T. R. Jones, M. R. Lamprecht, C. Clarke,

I. H. Kang, O. Friman, D. A. Guertin, J. H. Chang, R. A.

Lindquist, J. Moffat, et al. Cellprofiler: image analysis

software for identifying and quantifying cell phenotypes.

Genome biology, 7(10):R100, 2006. 2

[6] M. Cicconet, D. Geiger, and K. Gunsalus. Wavelet-based cir-

cular hough transform and its application in embryo develop-

mental analysis. 8th International Conference on Computer

Vision Theory and Applications, 2013. Barcelona, Spain. 4,

5

[7] J. Dai, K. He, and J. Sun. Instance-aware semantic segmen-

tation via multi-task network cascades. In IEEE Computer

Vision and Pattern Recognition, 2016. 2

[8] F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé,

S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan,

T. Lecomte, Y. Le Montagner, et al. Icy: an open bioim-

age informatics platform for extended reproducible research.

Nature methods, 9(7):690–696, 2012. 2

[9] A. Dufour, V. Shinin, S. Tajbakhsh, N. Guilln-Aghion,

J. Olivo-Marin, and C. Zimmer. Segmenting and tracking

fluorescent cells in dynamic 3-d microscopy with coupled

active surfaces. IEEE Transactions on Image Processing,

14:13961410, 2005. 2

[10] K. L. Frieda, J. M. Linton, S. Hormoz, J. Choi, K.-H. K.

Chow, Z. S. Singer, M. W. Budde, M. B. Elowitz, and L. Cai.

Synthetic recording and in situ readout of lineage informa-

tion in single cells. Nature, 541(7635):107–111, 2017. 1

[11] R. Gadde, V. Jampani, R. Marlet, and P. Gehler. Efficient

2d and 3d facade segmentation using auto-context. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

PP(99):1–1, 2017. 2

[12] D. Kainmueller, F. Jug, C. Rother, and G. Myers. Active

graph matching for automatic joint segmentation and anno-

tation of c. elegans. In International Conference on Medi-

cal Image Computing and Computer-Assisted Intervention.

Springer, 2014. 2

[13] P. Kontschieder, P. Kohli, J. Shotton, and A. Criminisi. Geof:

Geodesic forests for learning coupled predictors. In IEEE

Computer Vision and Pattern Recognition, 2013. 2

[14] F. Leymarie and M. Levine. Tracking deformable objects

in the plane using an active contour model. IEEE TPAMI,

15:617634, 1993. 2

[15] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In IEEE Computer Vi-

sion and Pattern Recognition, 2015. 2

[16] N. Malpica, C. Ortiz de Solorzano, J. Vaquero, A. Santos,

I. Vallcorba, J. Garcia-Sagredo, and F. del Pozo. Applying

watershed algorithms to the segmentation of clustered nuclei.

Cytometry, 28:289–297, 1997. 2

[17] N. Otsu. A threshold selection method from gray-level his-

tograms. IEEE Transactions on Systems, Man and Cybernet-

ics, 9(1):6266, 1979. 2

[18] D. Richmond, D. Kainmueller, B. Glocker, C. Rother, and

G. Myers. Uncertainty-driven forest predictors for vertebra

localization and segmentation. In International Conference

on Medical Image Computing and Computer-Assisted Inter-

vention, pages 653–660. Springer, 2015. 2

[19] T. Ridler and S. Calvard. Picture thresholding using an iter-

ative selection method. IEEE Transactions on Systems, Man

and Cybernetics, 8(8):630–632, 1978. 2

[20] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolu-

tional networks for biomedical image segmentation. In In-

ternational Conference on Medical Image Computing and

Computer-Assisted Intervention, pages 234–241. Springer,

2015. 2, 6, 8

[21] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig,

M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld,

B. Schmid, et al. Fiji: an open-source platform for

biological-image analysis. Nature methods, 9(7):676–682,

2012. 2

[22] S. Shah, E. Lubeck, W. Zhou, and L. Cai. In situ transcription

profiling of single cells reveals spatial organization of cells

in the mouse hippocampus. Neuron, 92(2):342–357, 2016. 1

[23] N. Silberman, D. Sontag, and R. Fergus. Instance segmen-

tation of indoor scenes using a coverage loss. In European

Conference on Computer Vision, pages 616–631. Springer,

2014. 1, 6

[24] P. Soille. Morphological image analysis: principles and ap-

plications. Springer Science & Business Media, 2013. 2,

5

[25] P. L. Ståhl, F. Salmén, S. Vickovic, A. Lundmark, J. F.

Navarro, J. Magnusson, S. Giacomello, M. Asp, J. O. West-

holm, M. Huss, et al. Visualization and analysis of gene

expression in tissue sections by spatial transcriptomics. Sci-

ence, 353(6294):78–82, 2016. 1

[26] Z. Tu and X. Bai. Auto-context and its application to high-

level vision tasks and 3d brain image segmentation. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

32(10):1744–1757, 2010. 2, 4

[27] X. Yang, H. Li, and X. Zhou. Nuclei segmentation using

marker-controlled watershed, tracking using mean-shift, and

kalman filter in time-lapse microscopy. IEEE Transactions

on Circuits and Systems I, 53:24052414, 2006. 2

142

