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Abstract

Particle tracking is of fundamental importance in diverse

quantitative analyses of dynamic intracellular processes us-

ing time-lapse microscopy. Due to frequent impracticability

of tracking particles manually, a number of fully automated

algorithms have been developed over past decades, carry-

ing out the tracking task in two subsequent phases: (1) par-

ticle detection and (2) particle linking. An objective bench-

mark for assessing the performance of such algorithms was

recently established by the Particle Tracking Challenge. Be-

cause its performance evaluation protocol finds correspon-

dences between a reference and algorithm-generated track-

ing result at the level of individual tracks, the performance

assessment strongly depends on the algorithm linking capa-

bilities. In this paper, we propose a novel performance eval-

uation protocol based on a simplified version of the tracking

accuracy measure employed in the Cell Tracking Challenge,

which establishes the correspondences at the level of indi-

vidual particle detections, thus allowing one to evaluate the

performance of each of the two phases in an isolated, unbi-

ased manner. By analyzing the tracking results of all 14 al-

gorithms competing in the Particle Tracking Challenge us-

ing the proposed evaluation protocol, we reveal substantial

changes in their detection and linking performance, yield-

ing rankings different from those reported previously.

1. Introduction

Particle tracking plays a key role in many biomedical ap-

plications focusing on dynamic intracellular processes. The

particle can be anything from a single molecule to a macro-

molecular complex, organelle, virus, or microsphere mani-

festing itself as a small dot in the image data. The problem

of particle tracking can be formulated as having a recorded

time-lapse sequence of moving dot-like objects, one is in-

terested in spatiotemporal positions of individual objects.

There are a dozen of software tools and fully automated

algorithms for particle tracking [8, 10]. They typically work

in two phases: (1) particle detection and (2) particle linking.

First, all particles are detected separately in every frame of

a given time-lapse sequence. Second, the detected particles

are linked into tracks, a set of which forms a linear oriented

forest (LOF) in the graph theory terminology. Knowing the

performance of individual phases is of great importance for

potential users when composing robust application-oriented

image analysis pipelines as well as for algorithm developers

when aiming at further algorithmic improvements.

An objective comparison of 14 particle trackers, using a

completely annotated repository of computer-generated im-

age data and a diverse set of performance evaluation criteria,

was performed recently within the Particle Tracking Chal-

lenge (PTC) [1]. Having a reference LOF and an algorithm-

generated LOF to be evaluated, the PTC evaluation protocol

establishes particle correspondences at the level of individ-

ual tracks, yielding a possibly inconsistent scoring for iden-

tical configurations of tracking errors with different tempo-

ral contexts, as shown in Figure 1 and listed in Table 1. Fur-

thermore, it provides neither users nor algorithm develop-

ers with a direct information about individual linking errors

committed by the algorithm, which may complicate its pa-

rameter fine-tuning and further algorithmic developments.

In this paper, we propose a new evaluation protocol that

establishes correspondences between a reference LOF and

an algorithm-generated LOF at the level of individual parti-

cle detections. It allows one to assess detection and linking

performance of the algorithm independently of each other,

thus consistently penalizing identical, time-varying config-

urations of tracking errors. After having particle detections

paired, the detection and linking performance is evaluated

using a simplified version of the Acyclic Oriented Graphs

Matching (AOGM) measure [6], which exploits only a lim-

ited subset of allowed graph operations available in LOFs.

The adoption of the AOGM concept allows one to directly

identify allowed graph operations needed when transform-

ing the algorithm-generated LOF to the reference one, thus

recognizing individual tracking errors committed by the al-
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Figure 1. Tracking results of four hypothetical algorithms that use

the same detection routine and four different linking routines, each

committing one linking error at a different time point. The tiny cir-

cles correspond to reference detections, the crosses to algorithm-

generated detections with localization errors of three pixels, and

the gray disks indicate the gating areas of five pixels within which

two detections are considered matching. The colors encode cate-

gories assigned by the PTC evaluation protocol to each detection:

matching (in green), missing (in blue), and spurious (in red), yield-

ing inconsistent detection and linking scores, as listed in Table 1.

Algorithm TP FN FP JSC α
A 4 1 1 0.67 0.32

B 3 2 2 0.43 0.24

C 3 2 2 0.43 0.24

D 4 1 1 0.67 0.32

Table 1. The performance scores for the tracking results of four hy-

pothetical algorithms from Figure 1, obtained using the PTC eval-

uation protocol. Although the four algorithms generated the iden-

tical sets of particle detections and committed a single linking error

only, their detection and linking performance, in terms of the Jac-

card similarity coefficient (JSC) and normalized track-wise pairing

distance (α), respectively, was scored inconsistently due to differ-

ences in the number of matching (TP), missing (FN), and spurious

detections (FP).

gorithm. By applying the proposed evaluation scheme to the

tracking results of all 14 algorithms that participated in PTC

and compiling their rankings in terms of particle detection,

localization, and linking, we show how much these rankings

correlate to those previously reported in [1].

2. Methods

A track is a temporal series of subsequent spatial posi-

tions. The spatial position of a particle at a given time point

t ≥ 1 is a vector θ(t) = (x(t), y(t), z(t)), where x(t), y(t),
and z(t) are the particle coordinates along the particular im-

age axes. In the case of 2D sequences, the third coordinate,

z(t), is constant and usually set to zero. A track θ that spans

the range of time points [tinit ≥ 1, tend ≥ tinit] is therefore

defined as a set θ = {θ(t) : t = tinit, . . . , tend}. If a parti-

cle position is unknown for a particular time point, its coor-

dinates are not listed in such a set. Clearly, every track can

be converted to an oriented path where vertices correspond

to individual spatial positions and edges to their temporal

relationships. Therefore, any tracking result composed of a

set of tracks can directly be represented as a LOF.

Given a reference and algorithm-generated set of tracks,

Θ1 and Θ2, respectively, our aim is to measure how similar

these two sets are. For this purpose, it is essential to estab-

lish correspondences between individual spatial positions

included in Θ1 and Θ2 at corresponding time points, which

in turn allows one to straightforwardly assess the similarity

of these two sets of tracks at the level of detection, localiza-

tion, and linking. At the level of detection, one is interested

in whether or not each spatial position included in one set of

tracks simultaneously appears in the other set of tracks, up

to a given gating distance, ε ∈ R, ε ≥ 0. At the level of lo-

calization, by contrast, one considers only spatial positions

paired with respect to the given gating distance, evaluating

errors in the localization of particle positions for individual

pairs. Finally, at the level of linking, the temporal aspect of

each set of tracks is mutually compared.

As the correspondences between spatial positions are es-

tablished based on their distances, the gated distance of two

spatial positions, θ1(t) and θ2(t), is defined as [1]:

‖θ1(t)− θ2(t)‖2,ε = min(ε, ‖θ1(t)− θ2(t)‖2) (1)

where ‖·‖2 is the Euclidean norm in R
3. The gated distance

of two spatial positions farther than ε or of an unknown spa-

tial position and a known one is set to ε, whereas that of two

unknown spatial positions is defined to be zero.

2.1. The PTC Evaluation Protocol

The PTC evaluation protocol [1] establishes correspon-

dences between the spatial positions in Θ1 and Θ2 by find-

ing an optimal pairing at the level of whole tracks in Θ1 and

Θ2 with respect to their distances. A distance between two

tracks, θ1 and θ2, is defined as:

d(θ1, θ2) =

T∑

t=1

‖θ1(t)− θ2(t)‖2,ε (2)

where T is the total number of time points in the sequence.

An optimal pairing of tracks is established by extending Θ2

with |Θ1| dummy tracks (denoted by ∅), each formally be-

ing an empty set of spatial positions, and by solving an op-

timal subpattern assignment using the Munkres algorithm.

This yields a globally best possible pairing, in terms of the

minimum total distance over all tracks in Θ1, of each track

θi ∈ Θ1 with a track θ̂i ∈ Θ2 ∪ ∅, being either an original
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track in Θ2 (if available) or a dummy track (in the absence

of a suitable track in Θ2).

Finally, the detection, localization, and linking similarity

between Θ1 and Θ2 is calculated as follows [1]:

• Detection: JSC = TP/(TP+FN+FP). This defines

the Jaccard similarity coefficient for spatial positions.

It always falls in the [0, 1] interval, with higher values

corresponding to higher detection similarity. TP (true

positives) denotes the number of matching positions

(i.e., known spatial positions within the given gating

distance) in the optimally paired tracks; FN (false neg-

atives) denotes the number of dummy positions in the

optimally paired tracks; and FP (false positives) de-

notes the number of nonmatching positions in Θ2.

• Localization: RMSE. This is the root-mean-square er-

ror of all matching positions in the optimally paired

tracks. It always falls in the [0, ε] interval, with lower

values corresponding to higher localization similarity.

• Linking: α(Θ1,Θ2) = 1−d(Θ1,Θ2)/d(Θ1,∅). α al-

ways falls in the [0, 1] interval, with higher values cor-

responding to higher linking similarity. d(Θ1,∅) is the

maximum possible total distance from a reference set

of tracks, being considered a normalization factor.

2.2. The Proposed Evaluation Protocol

Although JSC is easy to compute and interpret, the val-

ues of TP, and FN and FP, calculated using whole-track-

paired spatial positions, are often underestimated and over-

estimated, respectively, not always leading to a natural pic-

ture of the detection similarity between two tracking results,

as shown in Figure 1 and listed in Table 1. Bearing this in

mind, we establish correspondences between the spatial po-

sitions in Θ1 and Θ2 in a manner to simultaneously maxi-

mize TP and minimize FN and FP. To this end, a complete

bipartite graph, with the vertices corresponding to the spa-

tial positions in Θ1 for one vertex subset and to those in Θ2

extended by N dummy vertices for the other vertex subset,

where N is the number of spatial positions in Θ1, and with

the edge weights set to the reciprocal gated distances be-

tween the respective spatial positions, is constructed and an

optimal subpattern assignment is solved using the Munkres

algorithm. This yields a globally best possible pairing at the

level of individual spatial positions and with respect to the

minimum total gated distance between them.

The proposed alternative to finding correspondences be-

tween the spatial positions precludes evaluation of the link-

ing similarity using α. Furthemore, this measure provides

neither users nor algorithm developers with any clues about

dissimilar linking decisions, ruling out their identification

and possible curation. Nevertheless, both limitations can be

overcome by adapting the AOGM measure [6] to LOFs.

Being developed specifically for the Cell Tracking Chal-

lenge [7], the AOGM measure evaluates how difficult it is to

transform an algorithm-generated acyclic oriented graph to

a reference graph. The difficulty is measured as a weighted

sum of the lowest number of allowed graph operations that

make both graphs identical. When working with LOFs, the

graph operations allowed can be reduced to add/delete ver-

tex and add/delete edge, ignoring the graph operations, split

vertex and change edge semantics, related to undersegmen-

tation and branching events, which do not occur in LOFs.

Such a simplification also leads to the fact that any nonneg-

ative configuration of the weights used for the reduced set

of graph operations allowed always satisfies the minimality

condition, which guarantees the measured difficulty to be

not only the weighted sum of the lowest number of allowed

graph operations but also the minimum weighted sum [6].

Let G1 = (V1, E1) be a reference LOF that corresponds

to Θ1, and G2 = (V2, E2) be an algorithm-generated LOF

that corresponds to Θ2. Let the vertex correspondences be-

tween the sets V1 and V2 be defined using two pairing func-

tions, p1 : V1 → V2 ∪ {⊥} and p2 : V2 → V1 ∪ {⊥}, where

⊥/∈ V1 ∪V2 is a dummy vertex, and where pj(pi(vi)) = vi,
i, j ∈ {1, 2}, i 6= j, for every vi ∈ Vi such that pi(vi) ∈ Vj .

These pairing functions allow one to classify the vertices as

matching (i.e., true positives), missing (i.e., false negatives),

and spurious (i.e., false positives) as follows:

V TP

1 = {v1 ∈ V1 : p1(v1) 6=⊥} , (3)

V FN

1 = {v1 ∈ V1 : p1(v1) =⊥} , (4)

V TP

2 = {v2 ∈ V2 : p2(v2) 6=⊥} , (5)

V FP

2 = {v2 ∈ V2 : p2(v2) =⊥} , (6)

where V1 = V TP
1 ∪V FN

1 and V2 = V TP
2 ∪V FP

2 , and to count

the cardinality of each class: TP = |V TP
1 | = |V TP

2 |, FN =
|V FN

1 |, and FP = |V FP
2 |. Next, the numbers of missing and

redundant edges, EA and ED, are deduced from the induced

subgraphs, Ĝ1 = (V̂1, Ê1) and Ĝ2 = (V̂2, Ê2), by the ver-

tex sets V TP
1 and V TP

2 , being formed of the matching ver-

tices and their incident edges solely, as follows:

EA = |{(u, v) ∈ Ê1 : (p1(u), p1(v)) /∈ Ê2}| , (7)

ED = |{(u, v) ∈ Ê2 : (p2(u), p2(v)) /∈ Ê1}| . (8)

Finally, the detection and linking similarity between G1 and

G2 is calculated using a normalized, user-weighted sum of

those quantities that relate to the respective similarity type,

being referred to as LOFMD and LOFML as the abbrevia-

tions for the Linear Oriented Forests Matching measure for

particle detection and linking, respectively, as follows:

LOFMD = 1−
min(wFN · FN + wFP · FP, eD)

eD
, (9)
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LOFML = 1−
min(wEA · EA+ wED · ED, eL)

eL
, (10)

where (wFN, wFP, wEA, wED) is a user-defined configura-

tion of nonnegative weights for the individual graph opera-

tions allowed, and eD = wFN · |V1| and eL = wEA · |Ê1|
are the costs of creating the respective reference output from

scratch (i.e., when V2 = ∅ and Ê2 = ∅, respectively). The

minimum operator in the numerators prevents from having

final negative values when it is cheaper to create the respec-

tive reference outputs from scratch rather than to transform

the algorithm-generated output to them. The normalization

ensures that LOFMD and LOFML always fall in the [0, 1]
interval, with higher values corresponding to higher detec-

tion and linking similarity, respectively. Because eD and eL
could theoretically be zero, LOFMD and LOFML, respec-

tively, are defined to be zero if this is the case.

For the sake of completeness, the localization similarity

between G1 and G2 is calculated again using RMSE, but

this time over the matching vertices in the optimally paired

detections (i.e., over the vertex sets V TP
1 and V TP

2 ).

3. Results and Discussion

To validate the proposed evaluation protocol, we applied

it on the hypothetical tracking results shown in Figure 1 and

on the tracking results of all 14 algorithms that participated

in PTC, analyzing all four PTC biological scenarios (Mi-

crotubules, Receptors, Vesicles, and Viruses) of three levels

of particle density (low, mid, and high) and of two levels of

signal-to-noise ratio (4 and 7). The four scenarios displayed

realistic renderings of simulated, green-fluorescent-protein-

labeled particles of scenario-variable dynamics (randomly

oriented directed motion, switching between random-walk

and randomly oriented directed motion, random-walk mo-

tion, and switching between random-walk and orientation-

restricted directed motion) and appearance attributed to ap-

plying diverse point-spread-function models for virtual flu-

orescence microscopy (2D anisotropic Gaussian, 2D confo-

cal, 2D wide-field, and 3D confocal). In total, we evaluated

264 PTC tracking results because not all 14 algorithms pro-

vided tracking results for all analyzed scenarios. The gating

distance, ε, was set to 5, as used in PTC. The weight config-

uration, (wFN, wFP, wEA, wED), of LOFMD and LOFML

was fixed at (1, 1, 1.5, 1), adopting the edge-related weights

from [6] but changing the vertex-related weights to 1, thus

better reflecting a point-like nature of individual particles.

By establishing the particle correspondences at the level

of individual detections, instead of at the level of individual

tracks, the proposed evaluation protocol consistently scored

the identical sets of particle detections (Table 2), not con-

sidering temporal relationships between the particles, as the

PTC evaluation protocol did (Table 1). Furthermore, we can

observe an increase in the number of matching detections,

approximately from 11% to 48%, along with a decrease in

Algorithm TP FN FP LOFMD LOFML

A–D 5 0 0 1.0 0.75

Table 2. The performance scores for the tracking results of four hy-

pothetical algorithms from Figure 1, obtained using the proposed

evaluation protocol.

Figure 2. The overall distribution of particle detections, identified

by individual algorithms participating in PTC, obtained using the

PTC and proposed evaluation protocols (the left and right horizon-

tal bars, respectively, in each pair) across all analyzed scenarios.

the number of missing and spurious detections (Figure 2),

approximately from 6% to 23% and from 6% to 26%, re-

spectively. This has led to an increase in the average detec-

tion score over all detection scores for each algorithm and

analyzed scenario, from JSC = 0.58 ± 0.24, when apply-

ing the PTC evaluation protocol, to LOFMD = 0.82±0.26,

when applying the proposed evaluation protocol. Note that

having the particles paired at the level of individual detec-

tions gives JSC = 0.84± 0.21.

The isolated evaluation of the detection and linking parts

of tracking results also led to the consistent linking scores

in the case of one missing link at different time points (Ta-

ble 2). More importantly, it allows one to evaluate tracking

results at the level of individual tracking errors (Figure 3),

thus providing users and algorithm developers with relevant

practical clues on the algorithm behavior, which might help

in fine-tuning its parameters and improving its components

focused on individual phases of the particle tracking task.

The total rankings of all algorithms participating in PTC,

being compiled using the PTC and proposed evaluation pro-

tocols for each scenario, strongly correlate, in terms of the

Kendall rank correlation coefficient τ , for particle localiza-

tion, but not for particle detection and even less for particle

linking (Figure 4). Such an observation is not surprising be-

cause the proposed evaluation protocol adopts the localiza-

tion measure, RMSE, used in PTC, while involving concep-

tually different detection and linking measures over differ-

ently paired tracking results. The proposed evaluation pro-

tocol calculates RMSE over the set of matching detections
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Figure 3. The overall distribution of errors, committed by individ-

ual algorithms participating in PTC, obtained using the proposed

evaluation protocol across all analyzed scenarios.

Figure 4. The Kendall rank correlation coefficient, τ , between the

detection, localization, and linking rankings of all algorithms par-

ticipating in PTC, being compiled using the PTC and proposed

evaluation protocols for each analyzed scenario.

established at the level of individual detections, which can

be considered a superset of the set consisting of the match-

ing detections established at the level of individual tracks,

yielding the values of τ not being lower than 0.71 and be-

ing 0.89±0.09 on average across all analyzed scenarios. On

the contrary, the values of τ for particle detection and parti-

cle linking were 0.63± 0.24 and 0.41± 0.23, respectively,

on average across all analyzed scenarios, not exceeding the

level of 0.93 and 0.73, respectively.

Limiting the focus on the top three best-performing algo-

rithms only, we can generally conclude that the algorithms

were ranked as top-3 performers with comparable frequen-

cies using the PTC and proposed evaluation protocols, with

the exception of Algorithms 5, 8, and 12 (Figures 5 and 6).

Indeed, the localization scores of Algorithm 8 and the detec-

tion scores of Algorithm 12 were underrated using the PTC

evaluation protocol due to their lower whole-track-oriented

linking performance as compared to the best-performing al-

gorithms, which can be attributted to not always incorporat-

ing an appropriate particle motion model in the case of Al-

Figure 5. The total number of occurrences of individual algorithms

participating in PTC, being ranked among the top three detection,

localization, and linking performers according to the PTC and pro-

posed evaluation protocols across all analyzed scenarios. The bot-

tom chart was obtained by aggregating the three charts above it.

gorithm 8 [1, 5] and to making the linking decisions based

on a limited multi-frame information solely [1, 3]. Finally,

Algorithm 5 was ranked less frequent as a top-3 performer
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Figure 6. The top three best-performing algorithms in terms of particle detection, localization, and linking according to the PTC (the upper

panel) and proposed (the lower panel) evaluation protocols for each analyzed scenario.

using the proposed evaluation protocol than using the PTC

evaluation protocol namely because of evaluating the link-

ing performance on the induced subgraphs of LOFs by the

sets of matching detections, not taking into account the lo-

calization aspect as α did. Nevertheless, it is important to

note that in four out of seven situations when Algorithm 5

was not ranked as a top-3 linking performer, its scores were

lower than those of the third-ranked algorithms by less than

0.01. In the remaining three cases, its scores were lower by

0.02 to 0.05 than those of the third-ranked algorithms.

It is important to note that the optimal pairing of parti-

cle detections at the level of individual vertices in two given

LOFs does not have to be always unique in terms of estab-

lished pairs. Indeed, two possible configurations of collid-

ing vertices exist, which in turn may lead to multiple opti-

mal pairings of the same minimum total gated distance be-

tween the vertex sets. One is defined by multiple algorithm-

generated detections within the gating area of a single ref-

erence detection, being also in the same minimum distance

from it, whereas the other is formed of a single algorithm-

generated detection within the gating areas of multiple ref-

erence detections, being also in the same minimum distance

from each of them. In spite of not impacting LOFMD, these

colliding configurations can possibly influence LOFML by

wrongly increasing ED by no more than two for each col-

liding configuration. Nevertheless, their presence seems to

be very rare in the PTC tracking results, affecting less than

0.56% of all particle detections analyzed in this study. It is,

therefore, feasible to assess all optimal pairings and select

among them that with the minimum LOFML value.

4. Conclusion

In this paper, a new protocol for evaluating the detection

and linking performance of particle tracking algorithms has

been proposed. Treating particle tracking results as LOFs,

the proposed protocol evaluates how difficult it is to trans-

form an algorithm-generated LOF to a reference LOF. Such

a difficulty is measured by normalizing a weighted sum of

the lowest number of graph operations needed to make both

LOFs identical, after having their vertices optimally paired

at the level of individual detections. By analyzing the track-

ing results of all 14 algorithms that competed in PTC using

the proposed protocol, we have shown that it has compiled

substantially different rankings from those reported previ-

ously using the PTC protocol. In addition to performance-

oriented evaluation of particle tracking algorithms, the sym-
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metric nature of established vertex correspondences allows

one to use the proposed protocol also for determining dif-

ferences between multiple manual annotations of point-like

targets, thus finding its application in annotation fusing too.

In future work, we intend to make use of collision-related

information directly when establishing particle correspon-

dences at the level of individual detections, hence ensuring

the pairing optimality not only with respect to LOFMD, but

also with respect to LOFML, without exhaustively evaluat-

ing all possible optimal pairings. We also intend to focus on

relationships between the proposed evaluation protocol and

relevant approaches, used by the computer vision commu-

nity, to evaluating performance of multi-object trackers [4],

with the primary aim of interconnecting performance evalu-

ation protocols developed separately by the bioimage analy-

sis and computer vision communities for conceptually sim-

ilar, but domain-specific point-like trackers [9].

The Java-based implementation of the proposed evalua-

tion protocol is made publicly available as an Icy plugin [2].

The complete list of scores of all 14 algorithms that partic-

ipated in PTC, obtained using the proposed evaluation pro-

tocol, can be found at http://cbia.fi.muni.cz/projects/lofm.
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