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Abstract

In this contribution we demonstrate how a Multicut-

based segmentation pipeline can be scaled up to datasets

of hundreds of Gigabytes in size. Such datasets are preva-

lent in connectomics, where neuron segmentation needs to

be performed across very large electron microscopy image

volumes. We show the advantages of a hierarchical block-

wise scheme over local stitching strategies and evaluate the

performance of different Multicut solvers for the segmenta-

tion of the blocks in the hierarchy. We validate the accuracy

of our algorithm on a small fully annotated dataset (5×5×5

µm) and demonstrate no significant loss in segmentation

quality compared to solving the Multicut problem globally.

We evaluate the scalability of the algorithm on a 95×60×60

µm image volume and show that solving the Multicut prob-

lem is no longer the bottleneck of the segmentation pipeline.

1. Introduction

Connectomics is a domain of neuroscience which strives

to understand structure-function relations in neural circuits

from the directed graph of neural connections. The graph

itself – the wiring diagram of a nervous system – is usually

reconstructed from very large stacks of neural tissue images

acquired by electron microscopy (EM) [12, 16]. Recon-

struction of the graph consists of two major sub-problems:

tracing of neurons through the image stack and detecting

synapses which connect the neurons.

Unlike fluorescent labeling methods which typically re-

veal a sparse subset of neurons, the heavy metal stains used

in EM label all cell membranes in a piece of brain tissue.

Consequently, neuron tracing or segmentation have to be

based on boundary evidence and have to be performed on

images of very high resolution. At the same time, neural

cells spread over very large volumes; hundreds of Gigabytes

of images have to be analyzed to reconstruct a graph which
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would be relevant for biological analysis. Figure 1 shows

one image of such a dataset. Note how the segmented neu-

rons on the left pass through the whole dataset, while the

diameter of some processes in the inset on the right is so

small they can only be traced at full resolution. Recently,

the first complete brain of an adult fruit-fly has been imaged

[39], the dataset measures 110 Terabytes. The on-going ef-

forts to image the brains of small vertebrates are anticipated

to produce datasets of equal or greater size, for example:

[17, 28, 25].

Until very recently, most of the effort of the computer vi-

sion community has concentrated on solving the automated

reconstruction problem correctly at small scale. Since the

reconstruction accuracy has not been sufficiently good for

direct biological analysis, neuroscientists have resorted to

collective manual tracing [35, 11] or manual proof-reading

of automatically generated segmentations [22, 20, 31]. The

hurdle of fully automated segmentation, however, does not

seem insurmountable anymore: Lee et al. [24] have demon-

strated better-than-human performance on the SNEMI3D

[4] challenge dataset, the gap to human performance on

ISBI2012 [5] is shrinking, automatic segmentations of the

new CREMI challenge [15] are also of extremely good

quality. The question of scaling these methods up from

tiny challenge datasets to Terabyte-sized real data without

substantial loss in accuracy is now starting to be addressed

[33, 32, 27]. So far, the scaling has been achieved by per-

forming the segmentation block-wise and merging the sub-

block solutions based on local evidence. In this contribu-

tion, we propose a different approach which optimizes a

global objective function and allows to over-rule the local

sub-block solutions if evidence at larger scale suggests it

would lead to a better overall segmentation.

Our approach builds on the neuron segmentation

pipeline of [10], which is currently state-of-the-art or close

to it on all three popular connectomics challenges. The

pipeline is based on the Multicut graph partitioning prob-

lem. While this problem is NP-hard [13], practical approx-

imate solvers have recently been introduced. We extend the

pipeline to perform the global superpixel graph construction
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out-of-core and in parallel (subsection 3.2) and propose a

hierarchical block-wise approximate solver for the Multicut

problem (subsection 3.3). While the resulting solution is no

longer globally optimal, we demonstrate sufficient accuracy

on three datasets of the CREMI challenge (subsection 4.3)

and excellent scaling behavior on a large cutout from the

whole fruit-fly brain dataset of [39] (subsection 4.4).

While we focus on neuron reconstruction, the methods

introduced in this paper are potentially relevant for a wider

scope of problems that involve large-scale graph partition-

ing.

2. Related Work

Most neuron segmentation pipelines in use today [30, 14,

38] follow the same sequence of steps. First, a membrane

probability map is computed by a convolutional neural net-

work. Based on this map, over-segmentation of the volume

into fragments, also known as superpixels or supervoxels, is

performed to reduce the scale of the problem and to leverage

more context information than available directly on pixel

level. The region adjacency graph of the fragments is then

constructed and the segmentation problem is solved as par-

titioning or clustering on that graph.

The existing approaches to solving the neuron segmen-

tation problem at scale are based on the popular GALA

algorithm for agglomerative clustering with learned edge

weights ([30], [29]) . The volume is partitioned into blocks,

potentially with overlap, and GALA is applied to each block

independently and in parallel. The resulting block solutions

are then stitched to form the global volume segmentation.

In [33] this is achieved by stitching segments across blocks

according to largest overlap, while [32] employs a similar

strategy, but includes additional heuristics to prevent false

merges. In [27] the blocks are stitched by re-applying the

algorithm on the overlap of the blocks.

In contrast to all of the above, we propose to use Multicut

for the segmentation of the blocks, as it has been shown

to be superior to GALA in neuron segmentation challenges

[10]. Also, we formulate the graph partitioning problem

on the complete dataset and solve it hierarchically from the

bottom up.

The Multicut has been applied in computer vision prob-

lems frequently [19, 2]. Andres et al. first applied it to

connectomics in [3]. They also show that the Multicut can

be formulated as an integer linear program (ILP) and intro-

duce a solver based on the cutting planes approach. This

solver is guaranteed to converge to the globally optimal so-

lution. However, the problem being NP-hard, this approach

is not suitable for inferring large problems, which call for

an approximate solver.

Beier et al. [8] introduce two such solvers: the first one

is based on the fusion moves algorithm. It iteratively gen-

erates diverse proposal solutions and merges them using a

base Multicut solver until no further improvement of solu-

tions can be achieved. The other is based on greedy additive

edge contraction. The Kerninghan-Lin graph partitioning

algorithm [21] can also be applied to the Multicut problem.

We analyze the trade-offs of these algorithms for the con-

nectomics use case in subsection 4.2 in more detail. Further

approximate solvers have been introduced in [9, 6, 36, 1].

Block-wise solvers for similar problems have also been

proposed in [18, 23]. In fact, our approach could be viewed

as a generalization of [23] to work on real data: their solver

is developed for structured loss minimization and has only

been applied to very small blocks with very large overlap.

3. Methods

In the following we briefly describe the setup of the

Multicut problem for the segmentation of neurons in EM

datasets, as well as the block-wise solver we propose to

solve this problem at sufficiently large scale.

3.1. Multicut

The Multicut [13] is a graph partitioning problem, where

the number of partition elements is not known in advance.

It is defined by a graph G = (V,E) and costs c associ-

ated with the edges E. The objective of the problem is to

partition the nodes V into clusters, minimizing the sum of

costs associated with edges between the clusters (the ”cut“

edges). As Andres et al. showed in [3], it can be formulated

as an optimization problem by associating binary variables

ye with edges:

ỹ = argmin
y

∑

e

ye · ce s.t. (1)

∀ Y ∈ cycles(G) : ∀e ∈ Y : xe ≤
∑

ê∈Y \e

xê. (2)

Here the first equation expresses the objective and the sec-

ond defines the Multicut constraints necessary to guarantee

a consistent solution without ”dangling edges“. In this for-

mulation, edges with a positive weight are attractive (they

vote for joining the associated nodes) and edges with a neg-

ative weight are repulsive. In general, finding the optimal

solution for Equation 1 is NP-hard and even the existing

approximate solvers can not directly handle a graph suffi-

ciently large for a connectomics experiment. Our hierar-

chical approach introduced in subsection 3.3 allows to limit

application of the solvers to much smaller graphs, corre-

sponding to sub-blocks of the volume or, at higher levels of

the hierarchy, to the reduced problem on the stitched sub-

blocks.

3.2. Constructing Multicut Problem

The Multicut problem is set up similar to [10]. First,

we use a deep convolutional neural network to predict the

2



Figure 1: Part of an image from the whole fruit-fly brain dataset [39]. Highlighted neurons were segmented automatically

with the proposed block-wise algorithm (some post-processing was applied to merge small falsely split fragments). The inset

on the right shows some of the smaller process as well as a synaptic contact site, roughly in the middle.

affinity of a voxel to its neighbors. The network architecture

used here is based on multiple 2-D Inception / GoogleLeNet

towers [37], which share weights and are applied to neigh-

boring slices before being fused for the output classification

layer. It is trained to also predict longer range affinities in

order to better resolve local ambiguities, similar to [24]. We

obtain boundary probabilities by averaging over the local x-

and y-channel of the predicted affinity map. Based on these

probabilities, we generate a fragmentation with running a

watershed on the distance transform of the boundary. The

fragmentations are computed separately for each slice and

then stacked along the (anisotropic) z-axis. A region adja-

cency graph is constructed for the fragments.

Here, we differentiate between two types of graph edges:

the xy-edges that connect nodes (fragments) in the same z-

slice and z-edges that connect nodes in different z-slices.

In addition, slices that are affected by serious imaging de-

fects or completely missing are excluded from the graph.

We detect such slices automatically based on the observa-

tion that the number of fragments in those slices is very dif-

ferent from the number of fragments in slices not affected

by a defect.To exclude them, we remove all edges that con-

nect nodes in the defected slice z with nodes in the adjacent

slices z+1 and z− 1. Then we connect nodes in z+1 and

z − 1 via the so-called skip edges. This procedure is gener-

alized to defects that occur in several consecutive slices.

Next we compute features for all edge types. These are

based on appearance of the raw data and probability maps

accumulated over the fragment boundaries and on the raw

data appearance accumulated over the fragments. The fea-

tures are used to predict with Random Forests1 (separately

for xy-, z- and skip-edges) if an edge should be present in

the final segmentation. The resulting probabilities p are

then weighted according to the edge type and length and

transformed to edge costs for the Multicut problem via:

ce = log
1− pe

pe
+ log

1− β

β
, (3)

where the boundary bias β allows to tune the degree of over-

segmentation.

All computations are implemented in parallel using

multi-threading and out-of-core by leveraging an HDF5

data backend. The compute times for all the steps above

are listed in the section 4.

3.3. Block­wise Multicut

Our overall goal is to solve the Multicut for very

large problems such as the segmentation of connectomics

datasets. We want to achieve this by minimizing a global

objective because we postulate this strategy to be superior

to the local approaches pursued in previous work (cf. sec-

tion 2, subsection 4.3). To this end, we divide the global

problem into sub-problems feasible for existing solvers and

use the sub-solutions to reduce the global problem. The

block-wise Multicut solver achieves this by extracting sub-

problems from a covering of the volume with overlapping

blocks. It then solves these sub-problems in parallel and

reduces the global problem by merging the nodes which

1Trained on separate data with ground-truth annotations.
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are unambiguously merged in the solutions of the sub-

problems. These steps can be iterated until the reduced

problem is small enough to be inferred with one of the ap-

proximate solvers. For a schematic overview and an exam-

ple, see algorithm 1 and Figure 2.

In step 1 (Figure 2, algorithm 1) we construct the global

problem (Figure 2, (b)) from the fragmentation (a) accord-

ing to subsection 3.2. In step 2, we construct sub-problems

from blocks as shown in (c).

The assignment of nodes to sub-problems is soft, i.e. a

sub-problem contains all nodes, together with associated

edges and costs, for which the corresponding fragments

overlap with the sub-block. The example sub-graphs are

shown in (c).

We solve the sub-problems in parallel (step 3) and retain

whether the edges in the sub-graphs should be merged (dot-

ted edges in (d)). In step 4, these sub-results are projected to

the global graph (e). The state of an edge in this projection

depends on its sub-result and its type, illustrated in (f):

• Connecting edges (green lines), for which the nodes

belong to different sub-problems, are not merged.

• Shared edges (red lines), for which both nodes be-

long to multiple sub-problems, are merged if they are

merged in all sub-problem solutions.

• Unique edges (blue lines), for which both nodes belong

to a single sub-problem, are merged if they are merged

in the sub-problem solution.

After projection, the graph is reduced according to the

merge decisions and costs for the new edges are computed

from the old costs by summation (step 4, (g)). This process

can be iterated with increasing block sizes until the reduced

problem is feasible (step 5). The result (h) is then projected

(step 6) to the initial global problem to obtain a segmenta-

tion (i).

Note that we take a conservative approach, not merging

connecting edges and only merging shared edges if all their

sub-results vote for a merge, because merge decisions that

are taken at a given hierarchy level cannot be undone later.

Due to this fact, the solution of the block-wise Multicut is

approximate, even if an exact solver is used for the sub-

problems.

4. Results and Discussion

4.1. Setup

The accuracy and runtime of the block-wise algorithm

was evaluated on the 3 training sets of the CREMI seg-

mentation challenge. Each of these datasets consists of a

8×12×12 µm block (200×3000×3000 pixels), including a

5×5×5 µm (125×1250×1250 pixels) crop with pixel-wise

ground-truth annotations. The CNN was pre-trained on data

Data: globalProblem, blockShape, overlap, nLevels

Result: nodeResult

1 problem = globalProblem;

for l in nLevels do

2 subProblems = extractSubproblems(problem,

blockShape, overlap);

3 subSolutions =

solveMulticutsInParallel(subProblems);

4 problem = reduceProblem(problem,

subProblems);

blockShape *= 2;

end

5 nodeResult = solveMulticut(problem);

6 nodeResult = projectToGlobalGraph(nodeResult,

globalProblem);

Algorithm 1: Schematic overview of the block-wise Mul-

ticut solver. A given problem is reduced by solving sub-

problems and merging the graph accordingly for a given

number of iterations. The reduced problem is then solved

and projected back to the global solution. Line numbers

correspond to the numbered arrows in Figure 2.

from the ISBI-challenge, but only trained on the Sample

A dataset. Note, that we perform the evaluation for each

dataset individually and train the edge cost Random Forests

on the two other datasets to ensure a complete train/test sep-

aration.

We compare the following algorithms for solving the

Multicut problems in our pipeline: ILP-based solver ilp [3],

the Kernighan-Lin algorithm kl [21], the greedy additive

edge contraction gaec [8], and the fusion moves solver fm-

x, where x denotes the base solver used in the fusion move

[8]. The approximate solvers that profit from warm-starting

are initialized with the solutions of cheaper solvers. That

is, we warm-start kl with the solutions of gaec and fm-ilp,

fm-kl with the solution of kl.

Next, we validate the proposed block-wise solver on the

same three datasets, using the ground-truth crops for eval-

uation. We also compare to baseline stitching approaches

and compare different parameter settings.

Finally, we evaluate the scalability of our approach with

different Multicut solvers on a large cutout from the whole

adult fruit-fly brain dataset, the so-called Sample D. The

cutout covers a 95×60×60 µm block which includes sev-

eral regions of interest from the neuroscience point of view.

The CREMI challenge datasets are contained in this block,

but no other parts of the block have ground-truth annota-

tions.

All experiments were performed on a single workstation

with 20 physical cores and 256 GB of RAM.
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Figure 2: Block-wise Multicut example: from the global

problem (a, b) sub-problems are extracted from blocks (c)

and solved in parallel (d). The sub-solutions are projected

to the global problem (e, g), blue and red edges are merged

if needed (f). After a fixed number of iterations, the reduced

problem is solved (h) and projected to a segmentation (i).

4.2. Solver performance at smaller scale

We apply the solvers kl, fm-kl and fm-ilp to the three

problems created from the large CREMI blocks. See Fig-

ure 3 for the anytime performance on the different sam-

ples. For all three samples, the kl-solver converges after

a few minutes. The fusion-move solvers can improve on

its results, but converge much slower. For Sample A fm-

ilp shows a slightly better anytime performance, while for

Sample B and C fm-kl performs better. Both solvers do not

converge in the set time limit of one hour.

These experiments show that the kl-solver is well suited

for inference of large problems. It can be combined with

fusion moves to converge to even lower energies. In con-

trast, the ilp-solver is not suited for inference of such large

problems, as it yields inferior results as base solver for the

fusion move.

4.3. Segmentation accuracy evaluation

Since ground-truth annotations are only available for

the small datasets, we crop the segmentations obtained for

larger datasets to the annotated regions and perform valida-

tion on those. To avoid worse scores from processes that

are joined outside the annotated region we run connected

components on the cropped segmentations. We report the

same score as used in the CREMI challenge – the mean

of Rand-F1-score, VI-split and VI-merge [5, 26]. For this

score, lower values correspond to better performance. Note,

that with the block size we chose for experiments in Table 1,

the validation region is stitched from 27 sub-blocks.

The first three rows of Table 1 contain the comparison of

the proposed block-wise algorithm with the global Multicut

results. To ensure the correct baseline, we compare both

to the Multicut solution for the small dataset (solved with

fm-ilp) and to the cropped Multicut solution for the larger

dataset (solved with fm-kl). In both cases the global Multi-

cut is run until convergence.

Besides the global solution, we compare to other pop-

ular block stitching approaches. Starting from the same

sub-block solutions as the block-wise Multicut, we perform

stitching by largest overlap as in [33, 32] and, as an alter-

native, greedily stitch the sub-blocks by merging all edges

between sub-block solutions (connecting edges as described

in subsection 3.3) that are attractive. We also compare to an

approach where we resolve the Multicut for all problems

arising from the block-overlaps and stitch based on these

solutions, similar to the approach in [27].

The results in Table 1 show much better scores for the

block-wise Multicut as compared to other stitching ap-

proaches. In fact, it achieves scores slightly better than that

of the global Multicut solver, though we believe this effect

not to be systematic. Its runtime is over an order of magni-

tude smaller than the global solver. It is also interesting to

note that the results cropped from larger datasets have bet-
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ter scores than the results on the small annotated datasets.

This effect can probably be explained by additional context
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Figure 3: Anytime performances of different solvers for the

CREMI datasets with time limit of 1 hour.

at the edges of the dataset which is available for the larger

volumes. In addition, we compare the energies Equation 1

of the solutions, which are lowest for the global Multicut

solution, but not significantly different from our block-wise

solver. For Sample C, stitching based on the local Multicut

results yields the lowest energy. This is surprising and we

do not have a satisfactory explanation yet.

Note that the best scores reported here are not compet-

itive with the current state-of-the-art in the CREMI chal-

lenge leaderboard2, although the top challenge results were

obtained with the Multicut pipeline on which our approach

is based. Several factors may contribute to this performance

gap: first the leading submission (MALAMC) is based on

a network that is itself placed fairly high in the leader-

board (MALA). Second, the MALA network, as well as the

leading submission, were generated on realigned volumes

which make 3D continuity of the processes much more reli-

able. Finally, the network used here, as well as the edge cost

Random Forest, were only trained on parts of the ground-

truth.

Now that the advantage of using block-wise Multicut

over local stitching has been established, we evaluate the

influence of the algorithm parameters on accuracy and run-

time. In Table 2a, we solve the problem with different num-

bers of levels in the hierarchy. One level corresponds to

running the the algorithm on sub-blocks, stitching the re-

sults and re-solving the reduced problem. Increasing the

number of levels reduces the problem size for each individ-

ual Multicut, but also makes the overall problem less similar

to the global Multicut. Still, as we can observe in Table 2a,

using 3 levels does not significantly affect the accuracy for

datasets A and C.

Table 2b illustrates the algorithm performance for dif-

ferent shapes of the sub-blocks. Setting this parameter to

50×512×512 seems to provide the best trade-off between

context and runtime. However, if smaller block size needs

to be selected due to limitations in computing resources, the

decline in accuracy is still tolerable.

The overlap between sub-blocks is analyzed in Table 2c.

Larger overlaps increase the problem size and thus the run-

time of the algorithm, but in our experiments they do not to

provide a significant accuracy boost.

Finally, Table 2d analyzes the performance of different

solvers in the sub- and reduced problems. Here, as in Fig-

ure 3, we can appreciate just how fast the Kernighan-Lin

algorithm is, without a big loss in the segmentation score.

Based on these results a viable segmentation strategy can

be constructed, where the problem is first solved with the

kl-solver, coarse-grained analysis is performed on the seg-

mentation and the blocks with most interesting structures

are re-segmented with a more accurate solver.

2https://cremi.org/
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Sample A Sample B Sample C

Solver Score Time Energy Score Time Energy Score Time Energy

Multicut (small) 0.3200 - - 0.7432 - - 0.7197 - -

Multicut 0.2690 1874 -537332 0.6921 9066 -2117459 0.6893 13580 -90414

Block-wise Multicut 0.2653 175 -536943 0.6811 702 -2103525 0.6874 483 -90335

Overlap Stitching 0.4319 462 -495487 0.8509 572 -2000648 0.7904 690 -84919

Greedy Stitching 0.4329 77 -527632 0.9479 184 -1967663 1.5115 235 -35957

Multicut Stitching 0.3748 104 -533473 0.8242 227 -2110191 0.6951 279 -90621

Table 1: Comparison of different solvers on the three large problems extracted from CREMI. The global Multicut is inferred

with fm-kl (large problem) / fm-ilp (small problem). The block-wise Multicut is run with a single hierarchy level. We use a

block shape of (50, 512, 512) and a block-overlap of (5, 50, 50). We use the solver fm-ilp for the sub-problems and fm-kl for

the reduced global problem. The baseline solvers use the same blocking. All runtimes are reported in seconds and exclude

the problem construction, which is the same in every case.

Sample A Sample B Sample C

Level Score Time Energy Score Time Energy Score Time Energy

1 0.2653 175 -536943 0.6811 702 -2103525 0.6874 483 -90335

2 0.2636 149 -536925 0.7218 288 -2103023 0.6905 390 -90310

3 0.2635 148 -536925 0.7315 303 -2102854 0.6894 376 -90303

(a) Block-wise Multicut results with increasing number of solver levels.

Block Sample A Sample B Sample C

Shape Score Time Energy Score Time Energy Score Time Energy

25, 256, 256 0.2795 363 -536929 0.6872 2519 -2103877 0.7013 1190 -90351

50, 512, 512 0.2653 175 -536943 0.6811 702 -2103525 0.6874 483 -90335

100, 1024, 1024 0.2682 299 -536938 0.7322 1387 -2103116 0.6940 1891 -90341

(b) Block-wise Multicut results with increasing block shapes.

Block Sample A Sample B Sample C

Overlap Score Time Energy Score Time Energy Score Time Energy

1, 1, 1 0.2748 180 -536855 0.6996 354 -2102547 0.6951 369 -90262

2, 20, 20 0.2674 172 -536899 0.6546 436 -2103286 0.6780 575 -90297

5, 50, 50 0.2653 175 -536943 0.6811 702 -2103525 0.6874 483 -90335

10, 100, 100 0.2686 241 -536965 0.6817 737 -2103878 0.6907 742 -90355

(c) Block-wise Multicut results with increasing block overlaps.

Solver Sample A Sample B Sample C

Sub / Reduced Score Time Energy Score Time Energy Score Time Energy

kl / kl 0.2682 12 -536928 0.6546 16 -2103049 0.6879 20 -90323

fm-kl / kl 0.2692 28 -536939 0.6819 42 -2103314 0.6869 61 -90331

fm-ilp / fm-kl 0.2653 175 -536943 0.6811 702 -2103525 0.6874 483 -90335

ilp / fm-ilp 0.2585 824 -536951 0.6693 2265 -2103947 - - -

(d) Block-wise Multicut results with different solvers. Inference with ilp / fm-kl did not converge for one of the sub-blocks.

Table 2: Lesion study for the block-wise Multicut solver. In each table, only a single parameter is varied, the others are set to

the values as in Table 1. The row corresponding to the result of Table 1 is marked italic. Times are reported in seconds.
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4.4. Solver performance on a larger scale

Here we report the results from running the block-wise

algorithm on a 150 GB image volume (Sample D). Since no

ground-truth annotations are available except for the small

cutout used for our smaller scale experiments, we can only

compare the energies achieved by different solvers. Similar

to Table 2d, Table 3 shows that inferring with the cheaper

solver combination yields comparable energies, while being

significantly faster. It has to be noted that lower energies do

not directly translate to lower segmentation scores (see, for

example, the results on Sample A in Table 1). While the

relationship is true in principle, a lot of noise is introduced

by the projection to superpixels and especially by the errors

of the classifier which estimates the energies of individual

edges.

For the remaining parts of the pipeline the runtimes are

as follows: generating fragments – 5 hours, graph construc-

tion and feature extraction – 27 hours, saving of the seg-

mentation result to disk – 2.5 hours. We don’t have an exact

estimate for inference of probability maps, but this step was

the clear bottleneck, as the network used here is not fully

convolutional and hence inefficient in inference.

Level Subsolver Inference Total Energy

1 1.07 - - -

2 0.13 10.34 11.54 -151057.2

3 0.15 10.67 12.03 -150930.2

4 0.28 10.22 11.86 -150871.1

(a) Results with solvers fm-ilp / fm-kl.

Level Subsolver Inference Total Energy

1 0.69 22.80 23.50 -151239.2

2 0.11 2.34 3.14 -151055.7

3 0.08 0.65 1.52 -150931.3

4 0.13 0.41 1.41 -150873.3

(b) Results with solvers kl / kl.

Table 3: Results of the block-wise Multicut solver on the

Sample D problem. We compare two different solver com-

binations which are both inferred up to hierarchy level 4 and

report the time it took for solving the sub-problems (Sub-

solver), the reduced problem (Inference) and total runtime

(excluding problem construction) as well as the global en-

ergy. All times are reported in hours. We use initial block-

shape (50, 512, 512) and block overlaps (2, 20, 20). For

fm-ilp / fm-kl reduced inference for level 1 was not fea-

sible. For this solver combination reduced inference was

performed with a time-limit of 10 hours.

5. Conclusion

We have introduced a hierarchical block-wise solver for

the Multicut problem and, by evaluation on a neuron seg-

mentation challenge as well as on a large experimental

dataset, demonstrated excellent scalability without a sig-

nificant loss in performance. Solving the Multicut can no

longer be considered the bottleneck of the segmentation

pipeline of [10].

Meirovitch et al. in [27] introduce a coarse/fine segmen-

tation approach, which uses a very fast algorithm to quickly

scan over the volume for interesting structures and then per-

forms a more accurate segmentation at the regions of inter-

est. A similar scheme could be adapted to the pipeline we

propose, running the Kernighan-Lin algorithm first – it can

segment a 150 GB volume in just 1.4 hours – and then fine-

tuning with a fusion moves solver or the more expensive

lifted Multicut problem [7, 10] on a selection of blocks.

The core idea of our algorithm – gradually reducing the

global graph partitioning problem instead of greedily stitch-

ing the sub-graph partitionings – is not restricted to the

Multicut problem. It can also be applied to agglomera-

tive clustering, although, considering the performance of

the Kernighan-Lin algorithm, it is not obvious that a sig-

nificant speedup can be gained this way.

To further improve the scalability and performance of

our segmentation pipeline we plan to upgrade our CNN to a

fully-convolutional architecture based on a U-Net [34], aim-

ing for more efficient inference and higher quality of prob-

ability maps. Better membrane probability maps not only

create better over-segmentations, but also make for more re-

liable features. This will allow to compute less features for

the edge cost Random Forest without loss of accuracy, thus

addressing the next big bottleneck of the Multicut pipeline.

Should the block-wise Multicut solver at some point be-

come the bottleneck again, inference of the reduced prob-

lem can be sped up by using a parallel implementation of

the Kernighan-Lin solver.

Our hierarchical block-wise approach also opens the

door to incorporation of higher-level priors: while biolog-

ically improbable segments are not distinguishable on the

level of individual fragments, they become much easier to

find on the sub-block level.
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