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Abstract

Image registration between histology and magnetic res-

onance imaging (MRI) is a challenging task due to differ-

ences in structural content and contrast. Too thick and wide

specimens cannot be processed all at once and must be cut

into smaller pieces. This dramatically increases the com-

plexity of the problem, since each piece should be individ-

ually and manually pre-aligned. To the best of our knowl-

edge, no automatic method can reliably locate such piece

of tissue within its respective whole in the MRI slice, and

align it without any prior information. We propose here

a novel automatic approach to the joint problem of multi-

modal registration between histology and MRI, when only

a fraction of tissue is available from histology. The ap-

proach relies on the representation of images using their

level lines so as to reach contrast invariance. Shape ele-

ments obtained via the extraction of bitangents are encoded

in a projective-invariant manner, which permits the identi-

fication of common pieces of curves between two images.

We evaluated the approach on human brain histology and

compared resulting alignments against manually annotated

ground truths. Considering the complexity of the brain fold-

ing patterns, preliminary results are promising and suggest

the use of characteristic and meaningful shape elements for

improved robustness and efficiency.

1. Introduction

Histology is concerned with the various methods of mi-

croscopic examination of a thin tissue section. Cutting

through a specimen permits the investigation of its internal

topography and the observation of complex differentiated

structures through staining.

MRI constitutes an invaluable resource for routine, accu-

rate, non-invasive study of biological structures in three di-

mensions. Relative to histology, MRI avoids irreversible

Figure 1: Given a histological slice (bottom left) part of

a whole specimen, our method aims to automatically spot

where it was taken from in the clinical image and align it

(right). The result should agree with the areas delineated

prior to cutting (top left) to avoid any manual intervention.

damage and distortions induced by processing, cutting,

mounting and staining during the histological preparation.

However, resolution-wise, it is outperformed by histology.

One of the many benefits of combining histology and MRI

is to confirm non-invasive measures with baseline informa-

tion on the actual properties of tissues [5] by accessing si-

multaneously the chemical and cellular information of the

former and the rich structural information of the latter.

Such combination relies on image registration and this

can be achieved using iconic (intensity-based) [1] or ge-

ometric (feature-based) [22] approaches. Unfortunately,

the extraction and manipulation of meaningful information

from histology and clinical images is a very complicated

task because each modality has, by nature, its own features

and there does not always exist a mapping between their

constituents: local intensity mappings are non-linear and

images exhibit different structures—which is also a reason

why intensity-based methods tend to get trapped in local

optima. Hence, classical feature description methods, such
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as SIFT [26], fail to match features [30]. Incidentally, man-

ual extraction of landmarks may remain the safest way to

establish correspondences across modalities [17].

Besides, it is common for histopathology laboratories to

receive tissue samples that are: (P1) too wide or (P2) too

thick, to be processed as they are. The sample is therefore

cut into separate sub-blocks, each of which is processed in-

dividually. Unless additional scans of sub-blocks are ac-

quired (like in [1] for example), one must record which part

of the sample each sub-block corresponds to and use that in-

formation to initialise the registration of histological slices

with the clinical image, or manually align them. As for

problem (P2), attempts at using similarity measures have

been made to initialise registrations, but those are ambigu-

ous and rely on absolute measures rather than relative ones

[34]. On that matter, it was shown in [33] that direct com-

parison of images from different modalities is non-trivial,

and fails to reliably determine slice correspondences. To

the best of our knowledge, no automatic method to address

(P1) (see Fig. 1) has been proposed in the literature.

1.1. Related work

Regarding geometric approaches, one possible strat-

egy to align histology and clinical imaging is to simplify

the images into their contours, so as to come down to a

monomodal registration problem and use the shape infor-

mation provided by the external boundaries. In [2], contours

from both histology and slices from a rat brain atlas were

extracted via thresholding and represented using B-splines.

Then, they were described by means of sets of affine invari-

ants constructed from the sequence of area patches bounded

by the contour and the line connecting two consecutive in-

flections. In [31], Curvature Scale Space [27] was used for

the registration of whole-slide images of histological sec-

tions in order to represent shape (the tissue boundary) at

various scales. In [10], curvature maps at different scales

were used to match boundaries of full brain MRI extracted

via an active contour algorithm. The main weaknesses of

active contours are the number of parameters and the sensi-

tivity to initialisation.

An alternative to using a single contour was proposed

by morphologists, observing that level lines (the boundaries

of level sets) provide a complete, contrast-invariant repre-

sentation of images. Furthermore, level lines fit the bound-

aries of structures and sub-structures of objects very well.

Then, given two images, the problem is to retrieve all the

level lines that are common to both images; this is however

feasible only if curves have been appropriately simplified

(smoothed) [18] (p.95). Like in [25], smooth pieces of level

lines (the shape elements [9]) can be encoded to represent

shape locally in e.g., an affine-invariant manner [24]. The

comparison of the resulting canonical curves then permits

to identify portions of level lines common to two images.

Problem (P1) being multimodal and fractional by na-

ture, it seems natural to formulate a solution that involves

contrast- and geometric-invariance, as well as locality.

Here, we present a novel approach to (P1) based on:

(i) representing both histology and MRI images using their

level lines [25]. This allows to reach contrast invariance

and to consider implicitly several structural layers of the

images—as opposed to relying solely on the outer bound-

aries of tissues. From there, characteristic shape elements

can be extracted locally along the level lines via their bitan-

gents (§3). (ii) Representing those elements in a projective

invariant manner (§4) as introduced by Rothwell in [29], so

as to be robust to some non-linear deformations that tissues

undergo during the histological process. Combining the two

procedures permits the partial matching of shape elements

regardless of the orientation of the tissue on glass slides.

Registration is then obtained as a result of shape recogni-

tion (§5).

1.2. Contributions

1. We address the joint problem of multimodal registra-

tion between a fraction of histology and its whole in an

MRI slice as a result of shape recognition using por-

tions of level lines.

2. We introduce an efficient refinement of bitangents via

ellipses.

3. We extend Rothwell’s framework to bitangents cross-

ing the level lines and compare the resulting canonical

curves using the Fréchet distance.

2. Preprocessing

We used two standard preprocessing steps: first, smooth-

ing, in order to simplify the image, preserve the shape of the

tissue, remove unnecessary details and obtain smooth level

lines (Fig. 2a); then, intensity correction, in order to account

for inhomogeneities of the field in MR images (Fig. 2c) or

illumination in histology.

Smoothing is based on Affine Morphological Scale

Space (AMSS) [4]. It is governed by the partial differen-

tial equation: ∂u
∂t = |Du|curv(u)1/3 where u is the image,

|Du| is the gradient of the image, curv(u) is the curvature

of the level line and t is a scale parameter. AMSS smoothes

homogeneous regions but enhances tissue boundaries. The

sequence of updates necessary to its computation follows

that presented in [28] (equations of §2.3).

Image intensities correction relies on surface fitting [11]:

the low-frequency bias of an image can be estimated us-

ing an adequate basis of smooth and orthogonal polynomial

functions. It then comes down to solving the least square

problem Ac = b, where b ∈ R
N is the vector of all the pix-

els values, and c the coefficients of one linear combination

of basis functions. A ∈ R
N×(n+1)(m+1) is the matrix of the

system: its k-th row is the vectorised outer product Φ(xk)⊗
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Figure 2: Smoothing and bias correction. (a) Level lines

(multiple of 16) prior (in colour) and posterior to AMSS

filtering (scale 2). (b) Corrupted and bias corrected images

of a T2 image of a human brain, along with the estimated

bias (Legendre polynomials of order 2). (c) The effect on

level lines of corrupted and corrected images is shown.

Φ(yk) with Φ(xk) = [P0(xk), P1(xk), . . . , Pm(xk)]
T and

Φ(yk) = [P0(yk), P1(yk), . . . , Pn(yk)] for pixel k ≤ N .

Pi(.) denotes a certain 1D polynomial of degree i. Degrees

m and n are usually taken small so as not to overfit the im-

age intensities. The left inverse of A (it is full rank) gives

the bias image, and correction is straightforward (Fig. 2b).

3. Finding bitangents

Characteristic shape elements are extracted by means of

bitangents of level lines. Bitangents are identified via the

tangent space (§3.1) and each one is refined using two el-

lipses fitted in the neighbourhood of estimated bitangent

points (§3.2.1). Since two ellipses have at most four bi-

tangents (§3.2.2), one needs to be singled out which corre-

sponds to the refined bitangent of the level line (§3.2.3).

In the following, a bitangent point is one of the two

points where a bitangent is in contact with the level line.

The length of a bitangent is defined as the number of inflec-

tions of the portion of level line that it covers. As a result,

a short bitangent refers to a bitangent that covers portions

with exactly two inflections and a long one, more than two.

3.1. Dual curve

Let L be a Jordan curve (level lines are plane simple

curves, though closedness is not guaranteed for all of them

in practice). Duality is defined as the polarity that sends

any point to a line and vice versa. The image of a point

with parameter t = t0 is the line:

ux(t0) + vy(t0) + 1 = 0. (1)

If the parameter t covers the whole range of definition, the

resulting set of straight lines is the envelope of L: the dual

L
∗ of L is the set of its tangent lines. A parametrisation of

L
∗ in homogeneous coordinates can be obtained from (1)

by differentiation w.r.t the parameter t and elimination. This

yields u = −ẏ(t)
ẋ(t)y(t)−ẏ(t)x(t) and v = ẋ(t)

ẋ(t)y(t)−ẏ(t)x(t) with

x, y 6= 0 (dot notation is used for differentiation).

Dual curves feature the following properties: an inflec-

tion of L maps onto a cusp of the dual, and two points shar-

ing a common tangent map onto a double point of the dual

curve. More generally, a set of n points sharing a common

tangent line maps onto a point of multiplicity n of the dual

curve. Finding the bitangents of L is therefore equivalent to

finding self-intersections of the polygonal curve L∗ (Fig. 3).

To that end, we used the Bentley-Ottmann algorithm [7, 6],

which is a line sweep algorithm that reports all intersections

among line segments in the plane.

3.2. Refining bitangents locations

The refinement of bitangents is preferable: since the

slopes of tangents vary substantially in portions of high cur-

vature, the lengths of segments of the dual curve increase on

portions where a self-intersection may happen. The evalu-

ation of that double point thus degrades, which directly af-

fects the estimation of bitangents.

3.2.1 Ellipse fitting

In order to cope with bitangent errors, we propose to refine

their locations by fitting ellipses [16] around estimated bi-

tangent points. This allows skipping the rotation part prior

to the quadratic fitting in [29]. Beforehand, bitangents lying

on almost straight edges of the level lines are removed by

looking at the residual of a line fit on the portions bounded

by the two bitangent points. This is intended to avoid the

degenerate case of fitting an ellipse to a nearly straight line.

Let F be a general conic. It is defined as the set of points

such that:

F (a,x) = a.x = ax2+by2+cxy+dx+ey+f = 0, (2)

where a = [a b c d e f ]T and x = [x2 y2 xy x y 1]T .

The constrained least square problem we wish to solve

here is: mina = aTSa subject to aTCa = 1, where

S = DTD is the scatter matrix, D is the design matrix,

made of the N points to be fitted and C is the constraint

matrix which expresses the constraint 4ac − b2 = 1 on the

conic parameters to make it an ellipse. This translates in a
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Figure 3: Left: the function x 7→ xsin(x) for all x ∈ [0, 4π],
and the set of its tangents (in grey) are shown. Inflection

points are shown with red dots (black dots in the right pic-

ture) and bitangents are coloured lines. Middle: the dual

curve: its 4 crossing points correspond to the 4 coloured bi-

tangents on the left. Right: bitangents (11 in total) of one

level line (in white) from a histological slice (after §3.1).

[6 × 6] matrix where C22 = −1 and C31 = C13 = 2, the

rest being zeros.

This yields the generalised eigenvalue problem (GEP):

Sa = λCa. (3)

The ellipse coefficients, a are the elements of the eigen-

vector that corresponds to the only positive eigenvalue. Al-

though the impact of S being nearly singular and C being

singular on the stability of the eigenvalues computation is

discussed in [20], we did not encounter any problem in our

experiments.

3.2.2 Bitangents of ellipses

The main goal of this section is to compute the bitangents

of two ellipses efficiently. This is achieved by transform-

ing a system of two polynomial equations into a polyno-

mial eigenvalue problem, and for further performance, into

a generalised eigenvalue problem.

Let us consider two ellipses, E1(a1,x) and E2(a2,x)
defined by bivariate quadratic polynomials, like in (2). The

tangent line, T : y = ux + v to say E1, is the line that in-

tersects E1 at exactly one point. By substitution, one gets

a degree 2 polynomial in x, which has a single root if and

only if its discriminant, ∆(α1,u) = 0. When considering

the tangent to both ellipses, this gives a system of n = 2
polynomial equations in unknowns u, v:

(s1)

{

α11u
2 + α12v

2 + α13uv + α14u+ α15v + α16 = 0

α21u
2 + α22v

2 + α23uv + α24u+ α25v + α26 = 0,

(4)

αi1 = e2i − 4cifi, αi2 = b2i − 4aici, αi3 = 4cidi − 2bidi,
αi4 = 2diei − 2bifi, αi5 = 2bidi − 4aiei and

αi6 = d2i − 4aifi, i = {1, 2}.

To start with, u is hidden in the coefficient field;

(s1) becomes a system of two equations f1(u, v) and

f2(u, v) in one variable v and coefficients from R[u] i.e.

f1, f2 ∈ (R[u])[v]. The degrees of these two equations are

d1 = d2 = 2.

Homogenising (s1) using a new variable w gives

(s2), a system of two homogeneous polynomial equations

F1(v, w) and F2(v, w) in two unknowns v, w:

(s2)

{

α11u
2 + α12v

2 + α13uv + α14uw + α15vw + α16w
2 = 0

α21u
2 + α22v

2 + α23uv + α24uw + α25vw + α26w
2 = 0,

(5)

The total degree d =
∑n

i=1(di − 1) + 1 equals 3. This

gives the set S of
(
n+ d− 1

d

)

= 4 possible monomials

ω
δ = vδ2wδ3 in variables v, w of total degree d i.e., such

that |δ| =
∑3

i=2 δi = 3: S = {v3, v2w, vw2, w3}. The set

S can be partitioned into two subsets according to a modi-

fied Macaulay-based method [23]:

S1 = {ωδ : |δ| = 3, vd1 |ωδ},
S2 = {ωδ : |δ| = 3, wd2 |ωδ}.

(6)

In other words, S1 (resp. S2) is the set of monomials of

total degree 3 that can be divided by v2 (resp. w2). This

gives S1 = {v3, v2w} and S2 = {vw2, w3}, from which

the extended set of four polynomial equations: vF1 = 0,

wF1 = 0, vF2 = 0 and wF2 = 0 can be derived.

After dehomogenisation (by setting w = 1), the ex-

tended system can be rewritten as a polynomial eigenvalue

problem (PEP):

C(u)v = 0, (7)

where v = [v3 v2 v 1]T and

C(u) =





α12 α13u+α15 α11u
2+α14u+α16 0

0 α12 α13u+α15 α11u
2+α14u+α16

α22 α23u+α25 α21u
2+α24u+α26 0

0 α22 α23u+α25 α21u
2+α24u+α26



.

Non-trivial solutions to (7) are the roots of det(C), which

gives up to 4 real solutions for u.

For each one of them e.g., u1, the corresponding singular

value decomposition has the form: C(u1) = USVT , where

the solution vector [v1 v2 v3 v4]
T is the column of V that

corresponds to the smallest singular value. The particular

solution v1 associated with u1 is e.g. v3
v4

, meaning that one

bitangent is parametrised by T1: y = u1x+ v1.

For the sake of completeness, the PEP (7) can be further

transformed into a GEP by first rewriting it as:

([ 0 0 α11 0
0 0 0 α11

0 0 α21 0
0 0 0 α21

]

︸ ︷︷ ︸

C2

u2 +

[ 0 α13 α14 0
0 0 α13 α14

0 α23 α24 0
0 0 α23 α24

]

︸ ︷︷ ︸

C1

u+

[ α12 α15 α16 0
0 α12 α15 α16

α22 α25 α26 0
0 α22 α25 α26

]

︸ ︷︷ ︸

C0

)

v = 0,

(8)

which is equivalent to the GEP:

Ay = uBy, (9)

with A =
[

04 I4
−C0 −C1

]
and B =

[
I4 04
04 C2

]
, 04 and I4 being

the [4 × 4] zero and identity matrices, and y = [ v
uv ] =
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[y1 y2 . . . y8]
T . A particular solution v1 is e.g., the quotient

y3
y4

(or equivalently 3

√
y1
y4

) from the eigenvector associated

with eigenvalue u1.

Note that the resolution of (9) is two orders of magnitude

faster compared to (7) using linear algebra packages.

Lastly, when the two ellipses E1 and E2 intersect in two

points, two out of the four eigenvalues obtained for u are

complex. These correspond to the two internal bitangents:

in that case, ellipses have only two external bitangents asso-

ciated with the other two real eigenvalues. It is also worth

noting that, when they exist, internal bitangents are associ-

ated with the extremal (real) eigenvalues.

3.2.3 Selecting one bitangent

In this section, we identify the only bitangent of E1 and

E2 that is also a bitangent of L (Fig. 4)—referred to as the

usable bitangent.

Let us consider: (i) bitangents directed from E1 to E2,

(ii) E1 is oriented positively and (iii) ∆ is its left-most

vertical tangent. Bitangents of E1 can be cyclically ordered

by considering independently the tangents below (in blue

in Fig. 4 Left), and above (in red) it, and sorting them by

decreasing y-intercept with the ellipse’s left-most tangent,

∆. This holds for cases where an ellipse lies above (resp.

below) all of the bitangents. Lemma 1 in [19] states that

the resulting cyclic order of the bitangent directions is C:

[LL,LR,RL,RR] (L and R stand for left and right and

refer to the locations of an ellipse relative to a bitangent).

Four possible cases arise: (c1) E2 stands to the right of

E1, (c2) is above E1 intersecting ∆, (c3) is to the left of E1,

and (c4) is below E1 intersecting ∆. For each case, the first

bitangent encountered starting from ∆, counter-clockwise,

has type LL, RR, RL and LR respectively; the next up to

three bitangents for each case have their types deduced from

the positive cyclic order C.

Now in order to select the usable bitangent, one has to

rely on the geometry of the level line L. Let us define

the unit curvature vector k, at every point along L as the

vector pointing toward the centre of the osculating circle:

k = κn = 〈kx, ky〉, where κ is the scalar curvature and n is

the normal (it is colinear to the gradient of the image along

L and directed toward the inside of the clockwise-oriented

closed curve here). The orientation of k allows differen-

tiating otherwise ambiguous situations; for example, two

pairs of ellipses (E1, E2) and (E1, E3), all of them fitting

portions with same curvature and satisfying the configura-

tion of case (c1), can be associated with a different type of

usable bitangent, RR and RL respectively. This happens

when k1 and k3 have opposite sense, while k1 and k2 have

the same. In the following, positiveness is defined for (c1)

and (c3) as ky > 0 and as kx > 0 for (c2) and (c4), and is

denoted with the superscript (+).

Figure 4: Left: cyclic ordering of bitangents. Middle/right:

Refinement of bitangents through ellipse fitting (E1 is in

cyan and E2 in red). The curvature vectors are shown in

blue, bitangent points are shown with triangles, and bitan-

gents with coloured dashed lines. Selected refined bitan-

gents are shown in yellow (usable bitangent types: middle,

LL; right, RL).

From there we define four patterns: (p1) (k
(+)
1 , k

(+)
2 ),

(p2) (k
(+)
1 , k

(−)
2 ), (p3) (k

(−)
1 , k

(+)
2 ) and (p4) (k

(−)
1 , k

(−)
2 ).

In cases (c1) and (c2), they correspond to the usable bitan-

gent type LL, LR, RL, RR respectively. Conversely, in

cases (c3) and (c4), they correspond to the type RR, RL,

LR, LL respectively. Since there is a one to one correspon-

dence between the four bitangents and the four types, it only

requires identifying one of four patterns (p) and one of four

cases (c) to pick the usable bitangent parameters.

We also extend the mapping to intersecting ellipses

(Fig. 4 Middle) by observing that the cyclic order of bitan-

gents is of the form [Te, Ti, Ti, Te] (subscripts e and i stand

for external and internal). Since only external bitangents

exist in the case where E1 and E2 intersect in two points

(§3.2.2), we are left with the cyclic order [Te, , , Te].
Bitangent points are straightforward to obtain for E1 and

E2 by substitution of the tangent equation in the ellipses

equations. Finally, we select the point of L that is the closest

to an ellipse bitangent point. Note that once all bitangents

are refined, some bitangent points may collapse to similar

locations. In order to reduce ineffective redundancy, only

one bitangent out of those that have their end points close

to each other is kept [29].

4. Projective shape representation

We now have a set of refined bitangents. Let us con-

sider one bitangent and its endpoints b1 and b2. In order

to encode the shape of a portion of (oriented) level line

Lr = L↾[b1, b2] (assuming b1 comes before b2) in a projec-

tive invariant manner (as opposed to affine invariant [24],

used in [25]), two more points are required: the cast points

c.. The four points b1, c1, c2, b2, invariant under projective

transformation, form the vertices of a polygon—the level

line frame Fl—and are mapped to the unit square vertices,

Fc (the canonical frame) [29]. The resulting projection is

applied to Lr and provides a canonical curve that can be

used for shape comparison and matching.

A cast point c1 (resp. c2) is defined as the contact point

of the tangent to Lr that intersects the level line at b1 (resp.
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Figure 5: Comparison of canonical curves (CC) and free

space diagrams. For two shape elements, the Fréchet dis-

tance, dF is computed between 2 CC from histology (red)

and MRI (blue) and the associated free space diagrams with

Fréchet paths (white line) are shown—only endpoints of

segments are used. The regions in black correspond to the

reachable free space (δ ≤ dF here).

b2). There exist several such points for each bitangent point

in the case of long bitangents. It thus becomes critical to

ensure that a candidate frame Fl forms a convex polygon

so as to get an acceptable projection of Lr to the canonical

frame. In the case of short bitangents, the construction of

Fl is straightforward as only two cast points exist. As for

long bitangents, a single portion of curve may be associated

with several canonical curves, each of which depends on

the frame configuration. As noted in [29], it is preferable to

pick those making a wide angle between the bitangent and

the cast tangents, as well as those having the cast points as

far from one another as possible: unbalanced frames may

give distorted canonical curves. This holds for bitangents

crossing the level line. It is also worth mentioning that this

step drastically prunes the set of bitangents that can lead to

satisfying frames.

4.1. Canonical curves

The goal is here to determine the 2D homography matrix

such that xi = ρTXi [21], where Xi = [Xi Yi 1]
T is the i-

th point in Fl (which no 3 are colinear) in homogeneous

coordinates, xi = [xi yi 1]
T is the i-th vertex of the unit

square defined by (0, 0, 1), (0, 1, 1), (1, 1, 1) and (1, 0, 1),
T is a [3 × 3] matrix of the transformation parameters with

T33 = 1 and ρ is a non-zero scalar that gives by elimination

8 equations from four correspondences, linear in the param-

eters. The solution we are seeking is the unit singular vector

corresponding to the smallest singular value of the matrix of

the system.

A normalisation step, which consists of translating and

scaling, is recommended for it forces the entries of the ma-

trix of the system to have similar magnitude. Further details

can be found in [21] (p.108).

4.2. Comparing polygonal curves

Contrary to [29], who relied on rays extended from an

origin (1/2, 0) in Fc and designed a feature vector made

of all the distances from every intersection point with the

canonical curve to the origin, we compare canonical curves

by means of the Fréchet distance (Fig. 5). The rationale is

that we also consider bitangents that cross level lines. This

means that the canonical curves may cross the base of Fc

one or several times with more or less complex convolu-

tions, making the use of rays impractical.

There are (at least) two common ways of defining the

similarity between polygonal curves: the Hausdorff dis-

tance [32] and the Fréchet distance. The latter has the ad-

vantage that it takes into account the ordering of the points

along the curves, thereby capturing curves structure better

[3]. For the sake of speed, we used the discrete Fréchet

distance (see Table 1 of [14]), which is an approximation

of the continuous Fréchet distance: it only uses the curves

vertices for measurements. From there, one can also define

the reachable free space, which is the set of points for which

the distance between two curves is lower than a distance pa-

rameter, δ and this allows tracking local similarity [8]. The

Fréchet distance is the minimum δ that allows reaching the

top right corner of the free space starting from (0, 0).

5. Matching and registration

By cross-comparisons between histology and MRI, one

obtains a measure of shape similarity (§4.2). Because each

level line is associated with many canonical curves (one for

each shape element), matches are found when the Fréchet

distance is minimum and below a certain threshold. We

can then use correspondences between Fl in histology and

MRI to compute an affine transformation (same principle as

in §4.1 with only 3 points—each providing two equations—

and p = [T11 T12 . . . T23 0 0 1]
T ). In order to minimise

the global alignment error, the points must be well-arranged

in images, i.e. the frames should be as wide as possible

(hence the advantage of using long bitangents). When con-

sidering several level lines in both modalities, each canon-

ical curve of each level line from histology returns at most

one matching canonical curve for each level line in the MRI.

False matches are filtered out using random sample consen-

sus (RANSAC) [15] and a single global transformation is

computed.

6. Results and discussion

We evaluated the method on 7 pieces of tissue, alto-

gether covering 3 different subjects. For each subject, we

had access to T2w, PSIR and PD MRI volumes (7 slices,

0.25×0.25×2mm3). From these volumes we selected the

slice that visually looked the most similar to one piece of

histology. Histological images were a series of 11 consec-
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utive 2µm-thick sections, stained with 11 different dyes.

At this point, it is worth noting that because the histolog-

ical slab was about 25µm-thick—compared to a 2mm-thick

slice from MRI—projective invariance not only allowed be-

ing robust to tissue distortions in the recognition process but

was also required in order to tolerate morphological varia-

tions happening within that 2mm gap.

A ground truth arrangement similar to that of Fig. 1 was

available for direct assessment of success or failure of the

alignment. It was made by a histopathologist at the time

of the tissue preparation and essentially consisted of report-

ing the cassettes locations onto a slice of a medical image

in order to keep track on which part of the sample the tis-

sue piece was cut from. In the following, we call confusing

(as opposed to meaningful [12] i.e., the tissue outer/inner

boundaries) level lines, those not providing relevant infor-

mation about the tissue shape.

We ran two experiments (Fig. 6): (E1) consisted of us-

ing levels multiple of 16, 12, 8 and 4 in histology and MR

images to investigate two questions: what is the impact of

confusing level lines as well as their number, on the match-

ing and the alignment? Can level lines be used as they

are, without any form of prior knowledge about the tissue

boundaries in images? Note that level lines were computed

at quantised levels 0 to 255 by steps of 1. We expect that

the sparser the set of level lines, the less informative about

the actual tissue shape they can be (since information is

lost when quantisation is coarse). This indeed translates in

higher numbers of false than true matches when using be-

tween 1/16th and 1/8th of all available level lines (except

for pieces 1 and 3 when using 1/8th, but this is hardly rep-

resentative). When sufficient information comes in (1/4th),

recognition becomes more successful: despite finding more

false than true matches for piece 2, RANSAC was able to re-

turn the correct transformation—most of the false matches

being isolated and spread across the MR image domain in

that case. In contrary, RANSAC was unable to deal with

false matches for pieces 5 and 6, those being related to am-

biguities (shape elements were small and confusing).

The second experiment (E2) investigated the question:

how robust is the matching/alignment when injecting con-

fusing information into a subset of meaningful level lines?

As such, we increased the number of neighbouring level

lines from ±5 to ±20 around a meaningful one. In prac-

tice, meaningful level lines are those around structural lay-

ers (contrasted boundaries) of the tissue and we manually

picked the corresponding levels. We can observe that the

more localised around relevant information the level lines

are, the higher the ratio true/false matches and the more

trustful the set of correspondences fed to RANSAC. This

is where redundancy is very valuable. However, the more

levels one includes, the further one goes from meaningful

information, and the more confusing it can get (see the in-

Figure 6: Top: (E1) joint effects of sparsity and confused-

ness on the recognition of shape elements between histol-

ogy and MRI for 6 pieces of tissue, along with the ability

of RANSAC to provide the correct transformation (*). Bot-

tom: (E2) effects of redundancy/confusedness. Numbers of

true/false matches (different opacity) are reported for each

piece (different colours) in both experiments. RANSAC is

successful 5 out of 6 times in (E2).

crease in false matches). Due to the complexity of the in-

formation and the sinuosity of the shape, we believe that

starting from a meaningful subset of level lines is an impor-

tant consideration.

Resulting alignments are shown in Fig. 7 for 3 pieces,

considering neighbourhoods of ±10 level lines. Overall, 5

pieces were matched correctly and two incorrectly. As for

piece 6, no shape element was discriminative enough to be

correctly matched with an MRI portion of level line without

any ambiguity (Fig. 7c), as only relatively short bitangents

could be extracted. As for piece 7, this is due to the fact

that it is close to convex (and thus was not considered in

the previous experiments). As a result, a few or no bitan-

gents could be extracted from that histological image and

no match was therefore available.

The main requirements of the approach are twofold and

relate to the length of the bitangents and the threshold on the

Fréchet distance. As stressed out earlier, short bitangents

convey little and ambiguous information about shape. This

results in false matches especially because of the tolerance

of the projective-invariant setting and the sinuosity of the

MRI level lines. As a matter of fact, we constrained the ap-

proach to using long bitangents: in practice, we used those

covering portions of a level line with more than 6 inflec-

tions. If a histological image happened to have informative

portions with more than two inflections but less than 6—
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Figure 7: Alignment results. (a1)-(b)-(c) Successes and

failure of the approach for pieces 1, 5 and 6, using PSIR,

T2 and PD images respectively. (a2) Example of matching

shape elements (orange) and associated level lines (green

and black) of piece 1. (a3) Affine-transformed matching

level lines of histology (orange) overlaid onto matching

level lines (green) of PSIR and its other level lines (black).

as it was the case for piece 5—then the longest bitangents

were used (4 and 5 inflections in that case). An upper bound

was also set (we chose 10 inflections) in order to speed up

the matching process and avoid aberrant comparisons with

bitangents covering the whole MR image; that range was

applied to both MRI and histology. The rationale for con-

sidering such a range is also that it is not guaranteed that two

level lines have the exact same number of inflections on cor-

responding portions across modalities, but their smoothness

ensures those numbers are close. Long bitangents produce

characteristic canonical curves (furthermore associated with

wide frames) and allow for lower thresholds on the Fréchet

distance while discarding false matches better.

7. Conclusion

This paper stands as a proof of concept that multimodal

registration between a piece of tissue from histology and its

whole in an MRI—which, to the best of our knowledge, re-

mains to be addressed—is achievable as a result of shape

recognition using portions of their level lines. Such a for-

mulation allows for contrast, projective invariant represen-

tation of shape elements and partial matching regardless of

the orientation of the piece of tissue on the glass slide (flips,

rotations). We also introduced a computationally efficient

refinement of bitangents using ellipses, from which a sin-

gle bitangent was retained according to the local geome-

try of the level line. All this however, is to be related with

the complexity of medical images; successful alignments

require subsets of meaningful level lines along with char-

acteristic shape elements. Those were obtained via the ex-

tension of Rothwell’s framework to bitangents crossing the

level lines and by preferring long bitangents.

Future works include: (i) the automatic extraction of

meaningful level lines [12]; (ii) the use of shortcut Fréchet

distance [13], which bypasses large dissimilarities. This

could improve robustness to tissue tears: a level line in his-

tology may be globally close in terms of its shape to part of

another in MRI but because of a tear that it follows, the dis-

tance between the associated canonical curves will be large.
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