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Abstract

Discovering cancer at an early stage is an effective way

to increase the chance of survival. However, since most

screening processes are done manually it is time inefficient

and thus a costly process. One way of automizing the

screening process could be to classify cells using Convo-

lutional Neural Networks. Convolutional Neural Networks

have been proven to be accurate for image classification

tasks. Two datasets containing oral cells and two datasets

containing cervical cells were used. For the cervical can-

cer dataset the cells were classified by medical experts as

normal or abnormal. For the oral cell dataset we only used

the diagnosis of the patient. All cells obtained from a pa-

tient with malignancy were thus considered malignant even

though most of them looked normal. The performance was

evaluated for two different network architectures, ResNet

and VGG. For the oral datasets the accuracy varied be-

tween 78-82% correctly classified cells depending on the

dataset and network. For the cervical datasets the accuracy

varied between 84-86% correctly classified cells depending

on the dataset and network. The results indicate a high po-

tential for detecting abnormalities in oral cavity and in uter-

ine cervix. ResNet was shown to be the preferable network,

with a higher accuracy and a smaller standard deviation.

∗Equal contribution

1. Introduction

Discovering cancer in an early stage leads to an early

treatment, which lowers the risk of morbidity and mortality.

By implementing a screening program the chances of dis-

covering cancer early increases. This means more people

with cancer can get an early treatment. For cervical can-

cer there has been a screening procedure based on the so

called PAP-test available for around 75 years. The test is

based on collecting cells by brushing the epthelial layer of

the uterine cervix. According to WHO early treatment can

prevent up to 80% of cervical cancer [19]. Oral cancer is in

many ways similar to cervical cancer and the incidence is

increasing world-wide. But there are no established screen-

ing programs for oral cancer today. This makes oral cancer

a disease with high morbidity and mortality rates [20].

The conventional way of carrying out the cervical cancer

screening is a visual examination under a microscope of the

collected cells that have been smeared on a glass slide and

stained. The cytotechnologist doing the screening looks for

any cells showing signs of malignant changes flipping be-

tween low and high magnification to examine the typically

around 100000 cells in a sample. This process can take

around 10-15 minutes and is thus costly. There was there-

for already in the 1950s attempts to automate this using au-

tomated image analysis. After numerous research projects

around the world commercial image analysis based screen-

ing systems appeared around the turn of the millennium [1].

Unfortunately these systems use the same time-consuming
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search for diagnostic cells and are not sufficiently cost ef-

fective to replace manual screening. The high cost leads

to the fact that screening programs for cervical cancer are

mostly performed in developed countries [18].

There is, however, an alternative way of doing the

screening and that is to look for malignancy associated

changes (MAC). MAC refers to small changes in the mor-

phology and chromatin structure of the nucleus in a cell.

The changes appear in normal looking cells located in the

vicinity of tumor-associated areas [14]. The changes are too

subtle to be caught by visual examination, but with comput-

erized image analysis one can start to detect these changes.

The advantage of looking for MAC is that the changes ap-

pear in basically all cells in the sample so instead of search-

ing for a few clearly malignant cells we only need to do a

careful analysis of the slight changes in the chromatin struc-

ture of a small random population of cells [9]. Conventional

image analysis has been used in trying to develop screening

systems based on the MAC approach but there is still need

for improvements for this approach to reach a real break-

through [10].

In recent years the deep learning field has exploded and

found application in many different areas. Convolutional

Neural Networks (CNN) are a type of deep learning net-

works. CNNs have been proven to produce high accuracy

for image classification tasks and have won the ImageNet

Large Scale Visual Recognition Challenge (ILSVCR) the

last years [13]. CNN:s have also been applied to cervical

cancer screening studies [2], [21], [6].

This paper presents a pilot study on applying the PAP-

based screening method for early detection of oral cancer

and to do so using the MAC approach and through applica-

tion of CNN. As a baseline we also trained a CNN to rec-

ognize cervical cancer using the conventional approach of

classifying diagnostic cells. We did this both on the publicly

available Herlev dataset and on a larger and more difficult

dataset collected in an earlier project at our center, where

cells are not discarded due to debris. The oral dataset was

collected for this work. Since we used the MAC approach

we only needed the diagnosis on the patient level, not for the

individual cells. To see how far the MAC effect could reach

and to decrease the influence of clearly diagnostic cells in

our dataset we also tried to detect cancer in samples col-

lected from the opposite side of the mouth from where the

malignant changes were seen.

2. Materials and Methods

2.1. Datasets

2.1.1 Oral Dataset

The cell samples were collected at Södersjukhuset in Stock-

holm. The patients have mixed genders, are non smoking,

some are human papillomavirus (HPV) positive and some

are not, and they have an age span of 47-77 years. From

each patient samples were collected with a brush that is

scraped at areas of interest in the oral cavity. Each scrape is

then smeared out on a glass, which is then stained to high-

light important cellular structures. Images from each sam-

ple were acquired using an Olympus BX51 bright-field mi-

croscope with a 20x, 0.75 NA objective giving a pixel size

of 0.32 µm. The microscope was equipped with an E-662

Piezo server controller and actuator which controls move-

ment of the microscope objective so that the focus level

changes slightly. From each smear, areas with a large num-

ber of cells were selected manually and a stack of images

was acquired with a step length of 0.4 µm. Each stack con-

tained 15 images with different focus, so that each cell was

in focus in at least one of the images in the stack.

Table 1: Oral dataset. The table presents the diagnosis of

each sample and how the dataset was divided for training

and testing. (hs) means healthy side and lists samples

collected from the healthy side of the oral cavity of patients

with tumors.

Oral Dataset 1 Oral Dataset 2

Patient Sample Diagnosis Nr. of cells
Training

(Fold)

Testing

(Fold)

Training

(Fold)

Testing

(Fold)

1 Healthy 2123 1,2,3 - 1,2 -
1

2 Healthy 1993 1,2,3 - 1,2 -

1 Healthy 1454 1,2,3 - 1,2 -
2

2 Healthy 1024 1,2,3 - 1,2 -

1 Healthy 928 - 1,2,3 - 1,2
3

2 Healthy 777 - 1,2,3 - 1,2

4 1 Tumor 245 1,3 2 - 1,2

1 Tumor (hs) 1198 - 1,2,3 1 2

2 Tumor (hs) 1098 - 1,2,3 1 25

3 Tumor 519 2,3 1 - 1,2

1 Tumor 988 1,2 3 - 1,2

2 Tumor 828 1,2 3 - 1,2

3 Tumor (hs) 872 - 1,2,3 2 1
6

4 Tumor (hs) 912 - 1,2,3 2 1

(a) Cells from a healthy patient. (b) Cells from a patient with tumor.

Figure 1: Example images from the oral dataset

The dataset was divided into two sub datasets. The first

one (Oral Dataset 1) containing samples taken from healthy

patients and samples taken from the tumor side of the oral

cavity of patients with tumors. The second (Oral Dataset 2)

contained samples taken from healthy patients and samples
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taken from the healthy side of the oral cavity of patients

with tumors. The division was done to get an indication if

the networks could find MAC in the samples. The dataset is

described in Table 1 and Figure 1.

2.1.2 CerviSCAN

This dataset is a result from the CerviSCAN project at Upp-

sala University. From 82 graded pap-smears more than 900

images, each with a focus stack of 41 images, were cap-

tured. The microscope used to preform the image acquisi-

tion was an Olympus BX51 bright field supplied with a 40x,

0.95 NA objective, resulting in a pixel size of 0.25 µm. To

be able to capture focus stacks for each image the micro-

scope was equipped with an E-662 Piezo server controller

and actuator. This managed to capture the focus stacks with

a step length of 0.4µm. After the images were captured

they were manually examined by a cytologist with 30 years

experience of screening pap-smears. The cytologist exam-

ined each image and marked individual cells and diagnosed

these according to the Bethesda system [9]. The resulting

dataset can be seen in Table 2 and Figure 2

Table 2: CerviSCAN Dataset

Normal

Diagnosis Nr of cells

Negative for Intraepithelial Lesion or Malignancy 9809

Abnormal

Diagnosis Nr of cells

Low-grade Squamous Intraepithelial Lesion 766

High-grade Squamous Intraepithelial Lesion 718

Squamous Cell Carcinomas 750

(a) Normal cells from CerviSCAN. (b) Abnormal cells from

CerviSCAN

Figure 2: Example images from the CerviSCAN dataset

2.1.3 Herlev Dataset

The Herlev dataset is a publicly available dataset devel-

oped in cooperation between the department of Pathology

at the Herlev University Hospital and the department of Au-

tomation at the Technical University of Denmark [3]. This

dataset was created for feature extraction and classification

purposes, but not specifically for CNNs [11]. The dataset

contains images of varying sizes, with images of normal

cells typically including a large cytoplasm while images of

abnormal cells typically only show cell nuclei (see Figure

3). As a result, image area as well as the ratio of nucleus

size to image size (as shown in Figure 4) may bias classi-

fication results. Here, we chose to resize the image using

bilinear interpolation, which also impacts the results since

interpolation changes the pixel values. Since the abnormal

cell images are in general smaller, resizing all images to the

same size magnifies these cells more than the normal cells.

Table 3: Herlev Dataset

Normal

Diagnosis Nr of cells

Superficial squamous epithelial 74

Intermediate squamous epithelial 70

Columnar epithelial 98

Abnormal

Diagnosis Nr of cells

Mild squamous non-keratinizing dysplasia 182

Moderate squamous non-keratinizing dysplasia 146

Severe squamous non-keratinizing dysplasia 197

Squamous cell carcinoma in situ intermediate 150

(a) Normal cells from the Herlev

dataset.

(b) Abnormal cells from the Herlev

dataset

Figure 3: Example images from the Herlev dataset

2.2. Image Preprocessing

Both the Oral and CerviSCAN dataset contains focus

stacks for each cell image. To find the image with best focus

for each cell the variance of the Laplacian was used. The

second order derivative expressed in the Laplacian is known

for passing high frequencies which can be an indication of
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(a) Image sizes.

(b) Ratio of nucleus size and image size.

Figure 4: Comparison of different image measurement for

the Herlev dataset.

sharp edges in an image [12]. All cells were cut out with a

size of 100×100 pixels. The image size was chosen so that

the nucleus would fit in the image for all cells. All images

of the same cell in the stack were then convolved with the

Laplacian and the variance was calculated. To obtain extra

information about the cells and not lose information due to

bad focus, smaller stacks of each cell were created and used

for training and evaluation. These cell images were created

using the focus information obtained with the Laplacian.

With the image having best focus as the middle image of

the stack, the four most adjacent images were stacked be-

low and above to create an image with a depth of five. This

means images with a size of 5 × 100 × 100 (Figure 5a).

Each image in the image stacks was normalized separately

by subtracting the mean and dividing by the standard devi-

ation. To expand the dataset the images were augmented.

Augmentation is a regularization technique, that have been

proved to improve the results [4]. Since the diagnosis of a

cell is depending on the relationship between neighboring

pixel values the augmentation was done without any inter-

polation. The images were mirrored and rotated 90 degrees

resulting in eight times as many images per image (Figure

5b).

(a) Example of five depth image used for both

the oral dataset and CerviSCAN.

(b) Augmentation.

Figure 5: Input image stack and augmentation methods.

2.3. Model Evaluation

One can look at the network predictions in different as-

pects, depending on what the aim is. One way is to di-

vide all predictions into four categories: Correctly classi-

fied samples (true positive, tp), correctly classified samples

that do not belong to the class (true negative, tn), samples

that were incorrectly assigned to the class (false positive, fp)

and samples that belongs to the class but were not correctly

classified (false negative, fn) [16].

With these four classes we calculate how good the net-

work predictions are. Accuracy is the tp + tn to total cell

rate, precision represents the tp to tp + fp rate, while recall

measures the tp to tp + fn rate. The F-score represents a

harmonic mean of recall and precision. The F-score is high

only when recall and precision are high. To get a high F-

score the network needs to have a low rate of fn and fp [16].

With the oral dataset, to obtain an independent evalua-

tion of the networks the patients were separated for train-

ing and evaluation. This means that samples from a given

patient were either used for training or evaluation. This en-

sures that the networks are evaluated on completely unseen

data.
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2.4. CNN Architecture and Training

The performance of CNN-based cell classification on

the datasets was evaluated on two different network archi-

tectures. One was a version of a VGG network [15] and

the other a version of ResNet [5]. The VGG architecture

used was inspired from the original VGG16 network with

16 weight layers [15]. The main difference is that one

fully connected layer (FC) is removed and batch normal-

ization [7] and dropout [17] are inserted to regularize the

network. Batch normalization is inserted after every con-

volutional layer and FC layer. After batch normalization a

ReLU layer is inserted as non-linearity. Between the two

FC layers dropout layers are inserted with a probability of

0.5, one before batch noramlization and one after. At the

end of the network softmax is used to calculate the proba-

bilities.

The ResNet architecture is inspired by the ResNet18 net-

work created by He et al. [5]. In the shortcut connections

batch normalization layers are inserted after both convolu-

tional layers. ReLU layers are inserted after the first con-

volutional layer and after the addition. In the halving short-

cut connections batch normalization is inserted after the two

convolutional layers. ReLU is inserted after the first convo-

lution and after the addition. Softmax is used at the end of

the network to calculate probabilities.

The size of the networks were determined by experi-

menting with the number of outputs from the first convolu-

tional layer. With each max pooling layer or halving short-

cut connection the spatial dimensions are halved while the

number of output feature maps are doubled. The optimal

value for the number of outputs was found to be 16. This

means the first convolutional layer (or shortcut connection)

had 16 outputs, the second 32 and so on, ending with 256

outputs for VGG before the FC layers and 128 outputs for

ResNet before the global average pooling layer (Figure 6).

The loss in the networks was calculated using cross en-

tropy. The optimization of the networks was done using

Adam optimization [8] with a learning rate of 0.01. Each

network was trained for 40 epochs and validated once per

epoch. The networks were evaluated using K-fold cross val-

idation.

3. Results and Discussion

3.1. Oral Datasets

Since no medical expert has gone through the glasses

and selected interesting cells there is no way of knowing

that important cells, indicating cancer, have been selected.

However, with the assumption that malignancy associated

changes might be present in all cells in vicinity of a tu-

mor, the presented result indicates that these changes can

be caught by CNNs (Table 4, 5). The patients with tumor

were rotated in training and testing to get a K-fold cross

(a) VGG inspired architecture. (b) Resnet inspired architecture

(c) Shortcut connection. (d) Halving shortcut connection.

Figure 6: Illustration of the two networks used.

validation. The value for K differed for the two datasets.

In Oral dataset 1, K = 3 was used and for Oral dataset 2,

K = 2 was used. As can be seen in Tables 4 and 5 both

networks have a higher score for Oral Dataset 2. An expla-

nation for this can be that the Oral Dataset 1 contains three

different patients whilst Oral Dataset 2 only contains two

patients. Oral Dataset 1 will then have a larger variation of

cells during training, which might lower the performance of

the network, but makes the results more stable. The net-

works were only tested on one single patient per class and

more extensive test on multiple patients would be required

to draw more general conclusions.

Table 4: 3-Fold evaluation for the Oral Dataset 1

Network Accuracy Precision Recall F score

VGG 80.66 ± 3.00 75.04 ± 7.68 80.68 ± 3.05 77.68 ± 5.28

ResNet 78.34 ± 2.37 72.48 ± 4.46 79.00 ± 3.37 75.51 ± 3.17
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Table 5: 2-Fold evaluation for the Oral Dataset 2

Network Accuracy Precision Recall F score

VGG 80.83 ± 2.55 82.41 ± 2.55 79.79 ± 3.75 81.07 ± 3.17

ResNet 82.39 ± 2.05 82.45 ± 2.38 82.58 ± 1.92 82.51 ± 2.15

To illustrate a real world implementation of how this

method could be used, the networks were tested on indi-

vidual samples, shown in Figure 7, 8, 9, 10. One can see

that healthy patient samples contains few malignant cells

and tumor patient samples contains a large amount of ma-

lignant cells according to the trained networks. By calcu-

lating some form of statistical threshold, a patient could be

diagnosed using these results. By comparing the results for

VGG and ResNet one can see that VGG classifies more tu-

mor cells as malignant than ResNet, but VGG also classifies

more healthy cells as malignant than ResNet. This indicates

that the trained VGG networks have a bias towards classify-

ing cells as malignant. If one choses to use ResNet a statis-

tical threshold would then be 30% (Figure 7, 9). Meanwhile

VGG would need a statistical threshold at 44%.

3.2. Cervical Datasets

Both datasets have an accuracy and F-score over 84%,

which indicates that there is a high potential of detecting

cellular changes due to malignancy. There is lower varia-

tion in the result for the CerviSCAN dataset compared to

the Herlev dataset (Tables 6 and 7). One can also see that

the ResNet architecture has a lower standard deviation for

both the datasets. With this information it might be possible

to showcase a specific amount of cells that, the network pre-

dicts, are most malignant which a doctor then could screen.

This would decrease the time spent on each sample and thus

make it cheaper and more efficient.

Table 6: 5-Fold evaluation for the CerviSCAN dataset

Network Accuracy Precision Recall F score

VGG 84.20 ± 0.86 84.35 ± 0.97 84.20 ± 0.86 84.28 ± 0.91

ResNet 84.45 ± 0.46 84.64 ± 0.38 84.45 ± 0.47 84.55 ± 0.41

Table 7: 5-Fold evaluation for the Herlev dataset

Network Accuracy Precision Recall F score

VGG 86.56 ± 3.18 85.94 ± 6.98 79.04 ± 3.81 82.16 ± 3.85

ResNet 86.45 ± 3.81 82.35 ± 5.11 84.45 ± 2.16 83.36 ± 3.65

4. Conclusion and Future Work

Our results on the two cervical datasets are in general

terms similar to what has been presented in numerous ear-

lier studies. This simply shows that a CNN with rather lim-

ited effort can be trained to reach similar results as can be

Figure 7: ResNet trained on Oral dataset 1 and evaluated

on samples from both datasets.

Figure 8: VGG trained on Oral dataset 1 and evaluated on

samples from both datasets.

done using much more carefully handcrafted features. The

striking result of our small study is that we reached similar

performance on the oral dataset in spite of the fact that we

there tried to classify all cells, not only selected diagnostic

cells, i.e. we applied the MAC approach. This result is even

more notable since it was achieved on oral cancer, a cancer

type which has been much less studied than cervical cancer.

The results are based on a reasonable number of cells but
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Figure 9: ResNet trained on Oral dataset 2 and evaluated

on samples from both datasets.

Figure 10: VGG trained on Oral dataset 2 and evaluated on

samples from both datasets.

very few patients. The most urgent future work is to extend

the material to many more patients. We are currently in the

process of planning and organizing such studies.

Between VGG and ResNet one could conclude that

ResNet is the preferable network architecture for this clas-

sification task. But there are many more network architec-

tures available and new ones are frequently presented so

another future possibility is to investigate if some other net-

work architecture could perform the task even better. Since

both the oral and cervical cells are similar an interesting fu-

ture work would be to try transfer learning between the two

cancer types. It would also be interesting to see how the

results compare to classical image analysis methods.
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