
Accurate Structure Recovery via Weighted Nuclear Norm: A Low Rank

Approach to Shape-from-Focus

Prashanth Kumar G.1 and Rajiv Ranjan Sahay2

Computational Vision Laboratory,
1Advanced Technology Development Centre,

2Department of Electrical Engineering,
1,2Indian Institute of Technology Kharagpur

1
prashanth02.b@gmail.com,

2
rajivsahay@gmail.com

Abstract

In recent years, weighted nuclear norm minimization

(WNNM) approach has been attracting much interest in

computer vision and machine learning. Due to the abil-

ity of WNNM to preserve large-scale sharp discontinuities

and small-scale fine details more effectively, we propose

to use it as a regularizer to recover the 3D structure us-

ing shape-from-focus (SFF). Initially, we estimate the All-

in-focus image and subsequently 3D structure is recovered

using space-variantly blurred observations from the SFF

stack. Since estimation of 3D shape is a severely ill-posed

problem, we use weighted nuclear norm as a regularizer

in the proposed algorithm. Finally, the estimated shape

profile is post-processed to compensate for the effect of

specular reflections in the observations on shape recon-

struction. We conducted several experiments on various

synthetic and real-world datasets and our results confirm

that the proposed method outperforms other state-of-the-art

techniques.

1. Introduction

Patch-based techniques [1, 2, 3] have become more pop-

ular in computer vision and machine learning in recent

years. An image exhibits self-similarity property [1], but

pixel based methods [4, 5] can not capture the redundancy

of small patches inside the same image. However, patch

based methods [1, 2, 3] have yielded excellent results in

many image applications exploiting the self-similarity prop-

erty of an image. The matrix constructed by stacking self-

similar non-local patches together in an image has low rank

[6, 7]. As the data in many practical problems possessing

intrinsic low rank structure, low rank matrix approximation

(LRMA) has achieved great success in various computer vi-

sion applications. Low rank minimization methods recon-

struct the data matrix by imposing an additional rank con-

straint upon the estimated matrix. Since direct rank mini-

mization is NP hard, the problem is generally approached

by minimizing the nuclear norm of the estimated matrix,

which is a convex relaxation for minimizing the matrix rank

[6]. This methodology is named as nuclear norm minimiza-

tion (NNM) and the nuclear norm of a matrix is defined as

the sum of its singular values. The main limitation of NNM

is that, it treats all singular values equally and shrinks each

of them with the same threshold. The large singular val-

ues of a matrix constructed by stacking similar patches de-

liver the major edge and texture information and therefore

we should shrink the larger singular values less while the

smaller ones should be shrunk more. Clearly, traditional

NNM model is not flexible enough to handle such issues.

To improve the flexibility of NNM, weighted nuclear norm

method is proposed in [7, 8], in which different weights are

assigned to all singular values by penalizing significant val-

ues by smaller weights and smaller values by larger weights.

Due to the ability of WNN to preserve large-scale sharp

edges and small-scale fine details more effectively, we pro-

pose to use WNN as a regularizer to recover the 3D structure

of the 3D objects using shape-from-focus (SFF).

Shape-from-focus [9] is a technique which uses degree

of focus as a cue to estimate the 3D structure or shape of the

objects in the scene. In this technique, one captures multi-

ple images (focal stack) by translating the 3D object rela-

tive to the camera. The captured images are space-variantly

blurred due to finite depth-of-field of the camera. The struc-

ture of the object is estimated by computing the degree of

focus of each point of the object in the stack of captured

images. Estimation of 3D shape from the blurred images

is an ill-posed problem and hence prior knowledge of the

unknown is required to regularize the solution. In the pro-

posed method we use low rank prior [10, 7] and formulate

an appropriate objective function using the WNN regular-
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izer. We resort to non-negative Garrote thresholding of the

singular values and estimate the shape of 3D specimen us-

ing the split-Bregman framework [11, 12] for optimization.

Since, in WNNM the singular values are penalized,

choice of good shrinkage operator is important. The dis-

advantage of soft thresholding is that the soft shrinkage es-

timates tend to have bigger bias, due to the shrinkage of

large coefficients. Due to the discontinuities of the shrink-

age function, the hard shrinkage estimates tend to have

bigger variance and can be unstable becoming sensitive to

small changes in the data. As a good compromise, the

non-negative Garrote threshold (NNGT) shrinkage function

[13, 14] is used in the proposed approach to reduce the bias.

Estimating 3D structure of metallic objects is challeng-

ing if there exist specular reflections in the observations

which is a common problem in SFF. As per our knowledge,

the existing techniques in the literature of SFF [9, 15, 16,

17, 18, 19, 20] didn’t consider the effect of specularity into

account for shape recovery. Since SFF computes the degree

of focus in images to estimate structure erroneous estimates

are obtained at specular regions as image intensities are sat-

urated.

Once the 3D shape has been estimated using the pro-

posed method, we apply inpainting as a post-processing

step after localizing the specular regions in the correspond-

ing focused image. We divide the all-in-focus image into

super-pixels using the technique in [21] and use k-means

clustering [22] to separate regions of specular reflections on

the low-textured metallic 3D specimen. Subsequently, a bi-

nary mask is obtained which identifies the locations of spec-

ularities. Using this binary mask we inpaint the erroneous

depth estimates by WNNM-NNGT algorithm.

The rest of the paper organized as follows. A brief litera-

ture survey of SFF and WNNM is given in section 2. A sim-

plified introduction to low rank minimization with weighted

nuclear norm is provided in section 3. Formation of image

in SFF and formulation of the problem is described in sec-

tion 4. Details of the proposed algorithm are presented in

section 5. The results of the proposed algorithm are com-

piled in section 6. Finally, section 7 provides the concluding

remarks for our work.

2. Related Works

Extracting 3D shape or depth from 2D images is a fun-

damental problem in computer vision. The popular meth-

ods are, stereo based technique [23, 24, 25], which mea-

sures disparities between a pair of images of the same scene

taken from two different viewpoints to recover depth. Struc-

ture from motion (SfM) [26, 27] computes the correspon-

dences between images to obtain the 2D motion field, which

in turn used to recover the 3D motion and the depth. The

depth-from-defocus (DFD) [28, 29, 30] is another technique

which uses two defocused blurred images of the same scene

captured using single camera with different focal and aper-

ture settings [31, 32].

Shape-from-focus (SFF) [9] is another popular method

to estimate the shape of 3D object by measuring the degree

of focus [17, 18, 19, 20] from the set blurred images. SFF

method uses a single camera to capture a sequence of space-

variantly blurred images. The degree of focus in the stack

of blurred images is exploited to arrive at an estimate of the

shape of the object. Authors in [18] showed that, the accu-

racy of SFF method is known to be superior than DFD tech-

nique. A multilayer feed-forward neural networks approach

to estimate shape in SFF is used in [33]. The authors in [15]

recover shape by maximizing the focus measure in the 3D

image volume. In [16], the authors extended the recovery of

shape using SFF by considering the relative defocus blur as

a cue. The authors in [34], reconstructed the high resolution

(HR) shape profile of the 3D object by modeling it as an in-

dependent Markov random fields. An MRF-based approach

was used in [17] for extracting shape of smooth and low tex-

tured objects using Iterative conditional mode (ICM). Even

though their method was robust to scene texture, the opti-

mization steps take longer time to run which is an inher-

ent problem in MRF based approaches. A discontinuity-

adaptive Markov random field (DAMRF) prior to estimate

the structure is proposed in [35], the non-convex objective

function is solved using graduated non-convexity (GNC) al-

gorithm. In [36], the authors estimated shape of the object

using total variation (TV) prior. A new method is proposed

in [37] that extends the capability of SFF taking parallax

into an account to estimate the depth profile of 3D objects

in the presence of structure-dependent pixel motion using

simulated annealing. Since low rank methods attracted sig-

nificant interest in recent years and become state-of-the-art

techniques in many computer vision problems. nonlocal

low-rank regularization approach is proposed in [38] to re-

cover the image in compressive sensing. Authors in [10]

combined low rank prior and TV prior to deblur the im-

age under Gaussian noise and salt-and-pepper noise and

achieved significant improvement over the state-of-the-art

deblurring methods. Video denoising problem based on

NNM is presented in [39]. The authors in [7, 8] proposed

a technique for image denoising using WNNM which was

outperformed on several state-of-the-art techniques in im-

age denoising. Due to the ability of low rank approaches to

recover images accurately, we proposed an algorithm to re-

cover the shape of the 3D object using WNN regularization

from the set of space-variantly blurred images.

3. Low Rank Minimization with Weighted Nu-

clear Norm

As mentioned in [6], minimization of nuclear norm is the

tightest convex relaxation of the original rank minimization

problem. Given a data matrix Y ∈ R
m×k, the goal of NNM
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is to find a matrix X ∈ R
m×k of rank r which satisfies the

following objective function,

X̂ = argmin
X

1

2
‖Y − X‖2F + λ‖X‖∗ (1)

where λ is a positive constant, ‖ · ‖∗ is nuclear norm (NN)

of a matrix X and first term is the Frobenious norm of data

fidelity term. In [40], it is shown that the low rank ma-

trix can be perfectly recovered from the degraded/corrupted

data matrix with high probability by solving the NNM prob-

lem. It is shown in [41], that NNM problem can be easily

solved by imposing soft-thresholding operation. The solu-

tion of Eq. (1) is given by

X̂ = USλ(Σ)VT (2)

where Y = U(Σ)VT is the SVD of Y and Sλ(Σ) is the

soft-thresholding operator function on diagonal matrix Σ

with parameter λ and is defined as

Sλ(Σ) = max(Σ− λ, 0) (3)

The main drawback of nuclear norm regularization is that, it

penalizes all singular values equally. As pointed out in [42],

for various machine vision tasks, the large singular values

of the data matrix are often much more important than the

smaller ones as they are related to the principal components

of the data. The larger singular values of a matrix con-

structed from the similar patches of an image deliver the

major edges and texture information. Hence, the weighted

nuclear norm proposed in [7, 8], assigns different weights

for each singular value. WNNM uses smaller weight value

to penalize the larger singular values and larger weight

value to penalize smaller singular values.

The weighted nuclear norm of a matrix X is defined as a

weighted sum of its singular values:

‖X‖w,∗ =

n
∑

i=1

wiσi(X ) (4)

where σ1(X ) ≥ σ2(X ) ≥ ....σn(X ) ≥ 0, the weight vector

w = [w1, w2, ...wn] and wi ≥ 0.

With WNN regularization, the low rank minimization

problem studied in [7, 8] is

X̂ = argmin
X

1

2
‖Y − X‖2F + ‖X‖w,∗ (5)

The global optimal solution of Eq. (5) under the order

constraints 0 ≤ w1 ≤ w2 ≤ .... ≤ wn as proved in [43] is

given by

X̂ = UDVT (6)

where

D =

(

diag(d1, d2, ..., dn)
0

)

and di = max(σi − wi, 0), i = 1, 2, ..., n. Further, if all

the nonzero singular values of Y are distinct, then X̂ is the

unique optimal solution.

For more general case, [42] showed that (d1, d2, ..., dn)
is the solution of the following convex optimization prob-

lem:

min
d1,..,dn

n
∑

i=1

1

2
(di − σi)

2 + widi,

s.t. d1 ≥ d2 ≥ ... ≥ dn ≥ 0

(7)

and they also verified that the globally optimal solution of

Eq. (7) has a closed form when the weights satisfy 0 ≤
w1 ≤ w2 ≤ ..... ≤ wn.

Given a patch xj located at j in the image, we can con-

struct a matrix Xj by stacking all patches similar to patch

xj into columns of the matrix and hence all column vectors

in Xj have similar image structures. This means that Xj is

a low rank matrix. Then the estimate of Xj can be obtained

by solving the following minimization problem:

X̂j = argmin
Xj

1

2
‖Yj −Xj‖2F + ‖Xj‖w,∗ (8)

Next, the latent image can be estimated via aggregating all

the estimated patches. The setting of the weights w is very

important in WNNM method. As defined in [7, 8], the

weight for the ith singular value of Xj is

w
j
i =

c
√
Nsp

σi(Xj) + ε
(9)

where c > 0 is a constant, Nsp is the number of similar

patches in Yj . Thus the latent image can be obtained via

singular value shrinkage. However, contrary to the hard

shrinkage operator, the soft shrinkage operator given in Eq.

(3) tends to have smaller variance but bigger bias because of

shrinking all the entries. As a good compromise, the non-

negative Garrote threshold shrinkage function was proposed

in [13, 14]. We modified the WNNM problem to WNNM-

NNGT by replacing the soft shrinkage function with non-

negative Garrote thresholding function to shrink the singu-

lar values. The non-negative Garrote shrinkage function

used in the proposed algorithm is

SGT
τ (z) =

{

z − τ2

z
, if |z| > τ

0, if |z| < τ
(10)

where τ > 0 is a threshold value, SGT is Garrote thresh-

olding function and z is a value to be thresholded. We

later show in our experiments that convergence of WNNM-

NNGT is superior than WNNM.
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Figure 1. Formation of blurred image due to defocus blur [28].

4. Image Formation in SFF

Space-variantly blurred observations are captured in

shape-from-focus scheme [9, 17, 36], by placing a 3D ob-

ject on a translational stage which moves in vertical di-

rection towards as away from the camera in finite steps of

size ∆d. Since the camera has a finite depth-of-field, only

those points on the object which lie inside the depth-of-field

are focused and other points are blurred. Initial position

of the translational stage is termed as the reference plane.

The plane passing through all those points of the 3D object

which are perfectly focused on the sensor plane is known

as focused plane. Working distance wd is the separation be-

tween focused plane and the lens. The focal length of the

lens is denoted by f and v is the distance between lens and

the image plane. As the translational stage moves in steps of

∆d from the reference plane, an image is captured at each

step to obtain the stack of blurred observations. Since, a real

aperture camera with a finite depth-of-field cannot bring all

the points of a 3D object into focus at the same time, only

the points (k, l) on the focused plane which satisfy lens law

are perfectly focused and the other regions are defocused

at different degrees. The shape of the object is determined

from the captured stack of blurred observations by search-

ing for those frames in which the object points come in fo-

cus.

4.1. Finite Aperture Camera

The point spread function (PSF), is the response of a

camera to a point light source. As shown in Fig. 1, a point

light source at a distance D from the lens will be imaged as

a circular disc on the image plane with radius rb given by

rb = Rv(
1

f
− 1

v
− 1

D
) (11)

where R is the radius of aperture of the lens.

Considering lens aberrations and diffraction, the PSF is

approximated by a 2D circularly symmetric Gaussian func-

tion [44]. The standard deviation of such a PSF is given

by

σ = ρrb = ρRv(
1

f
− 1

v
− 1

D
) (12)

where ρ is a camera constant.

The stack of observations {ym(i, j)}; m = 0, 1, ., N − 1
are captured, by moving the translating stage upwards in

steps of ∆d [36]. For the m-th frame the blur parameter

σm(i, j) at the point (i, j) can be expressed as

σm(i, j) = ρRv(
1

ωd

− 1

ωd +m∆d− d̄(i, j)
) (13)

Here d̄(i, j) is the distance by which the stage must be

moved to bring the point (i, j) into focus [36]. The blur

parameter σm(i, j) becomes zero, when the point (i, j) is

perfectly in focus, which happens when m∆d = d̄(i, j).
We know from Eq. (13) that σm(i, j) is related to

the depth d̄(i, j) of the scene. The 2D Gaussian PSF

hm(i, j) can be approximated to span the rectangle defined

by (i − 3σm(i, j), j − 3σm(i, j)) to (i + 3σm(i, j), j +
3σm(i, j)) centered at (i, j) in the mth observation. The

PSF hm(i, j; k, l) of the camera used in the SFF setup is

modeled as a 2D gaussian function.

hm(i, j; k, l) =
1

2πσ2
m(i, j)

exp(− (i− k)2 + (j − l)2

2σ2
m(i, j)

) (14)

where the standard deviation of the Gaussian function

{σm(i, j)} ∈ R
N×N is the space varying blur parameter at

location (i, j) in the mth observation.

From Eq. (12) and (13), we observe that σ is dependent

on the depth of the object in the scene and hence blurring in

the image is space-variant which can be expressed as

gm(i, j) =
∑

k

∑

l

x(k, l)hm(i, j; k, l) (15)

where {x(k, l)} is the pixel at (k, l) in the focused image

x and the space variant blurring kernel hm(i, j; k, l), which

span the rectangle defined by (k−3σm(k, l), l−3σm(k, l))
to (k + 3σm(k, l), l + 3σm(k, l)) centered at (k, l) can be

expressed as

hm(i, j; k, l) =
1

2πσ2
m(k, l)

exp(− (i− k)2 + (j − l)2

2σ2
m(k, l)

) (16)

The formation of the mth observation is modeled as

ym(i, j) = gm(i, j) + nm(i, j) (17)

where nm(i, j) is Gaussian noise.

4.2. Problem Formulation

The formation of space variant blurred image ym ∈
R

N×N , can be modeled as

ym(i, j) =
∑

k

∑

l

x(k, l)hm(i, j; k, l) + nm(i, j) (18)
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where m ∈ {0, ..., (M−1)} is the index of the observations

in the stack. Here {x(k, l)} ∈ R
N×N is the pixel at (k, l)

in the focused image x. Eq. (18) can also be written as

ym(i, j) =
∑

k

∑

l

x(k, l)hpm
(i, j; k, l) + nm(i, j) (19)

where

hpm
(i, j; k, l) =

1

Zm(k, l)
exp(− (i− k)2 + (j − l)2

2σ2
m(k, l)

)

and, Zm(k, l) =
∑

k

∑

l

exp(− (i− k)2 + (j − l)2

2σ2
m(k, l)

)

(20)

is the pth blurring kernel in the mth observation at pixel

position (i, j) in the image. The formation of a stack of

space variantly blurred images can be modeled as

ym = Hm(d̄) · x+ η (21)

Let d̄, x, σm, ym, η ∈ R
N2×1 be the vectors formed by lex-

icographically arranging matrices d̄(i, j), x(i, j), σm(i, j),
ym(i, j) and η(i, j), respectively. The matrix Hm repre-

sents the operation of structure-dependent blurring on the

focused image x. η is assumed to be an additive white zero

mean Gaussian noise model. Since we are interested in es-

timating shape profile d̄, so Eq. (21) can be rewritten as

ym = Xhpm
+ η (22)

where X is a sparse matrix and contains only elements from

x. The vector hpm
is formed by stacking together all PSFs.

The variable hpm
is a function of σm which is a function

of depth of the scene d̄. As the value of d̄ varies at each

point so do σm and hpm
. Since the kernel size depends on

σmmax
, let us assume a constant kernel size n× n at all the

points where n = 6σmmax
+1. So the size of the vector hpm

will be n2N2 × 1. Sparse matrix X ∈ R
N2×n2N2

is con-

structed from x. The matrix X and vector hpm
are formed

such that outputs of Eq. (19) and Eq. (22) are identical.

5. The Proposed Algorithm

The problem of estimation of 3D shape from the stack of

space-variantly blurred 2D images captured in SFF is typ-

ically ill-posed. Regularization in the form of priori con-

straints on the solution has to be imposed to estimate the

unknown depth map. In the proposed method we use WNN

regularization [7, 8] to estimate the shape profile d̄.

5.1. Estimation of Shape Profile

Since d̄, x, σm, ym ∈ R
N2×1 are vectors and as proved

in [45], Frobenious norm is equivalent to ℓ2 norm, the least

square estimate of d̄ with low rank regularization constraint

can be modeled as

ˆ̄d = argmin
d̄

1

2

q
∑

m=1

‖ym −Xhpm
(d̄)‖22 +

∑

j∈P
‖Rjd̄‖w,∗

(23)

where P denotes the set of indices of all reference patches

of d̄. The operator Rj firstly collects all the patches similar

to the reference patch located at jth position in d̄, and then

stacks those patches into a matrix which is assumed to be

of low rank. Solving the model in Eq. (23) is not straight-

forward and therefore we introduce an auxiliary variable u

to split the model into easily solvable sub-problems. The

constrained objective function is thus given by

ˆ̄d = argmin
d̄

1

2

q
∑

m=1

‖ym −Xhpm
(d̄)‖22 +

∑

j∈P
‖Rju‖w,∗

s.t. u = d̄

(24)

To solve Eq. (24), we convert it into an unconstrained objec-

tive function by adding a quadratic penalty term to it. The

split-Bregman method introduced in [11] is used to solve

the unconstrained problem and is given by

(ˆ̄d
l+1

,ul+1) = argmin
d̄,u

1

2

q
∑

m=1

‖ym −Xhpm
(d̄l)‖22

+
∑

j∈P
‖Rju

l‖w,∗ +
λ

2
‖d̄l − ul − bl‖22

(25)

and

bl+1 = bl + (ul+1 − d̄l+1) (26)

where l is the iteration number and λ > 0 is a constant

that balances between data fidelity and the quadratic penalty

term in order to control the quality of the estimated d̄. Ac-

cording to split-Bregman method [11], we can split the Eq.

(25) into two separate subproblems:

ˆ̄d
l+1

= argmin
d̄

1

2

q
∑

m=1

‖ym −Xhpm
(d̄

l
)‖22

+
λ

2
‖d̄l − ul − bl‖22

(27)

ul+1 = argmin
u

∑

j∈P
‖Rju

l‖w,∗ +
λ

2
‖d̄l+1 − ul − bl‖22 (28)

and

bl+1 = bl + (ul+1 − d̄l+1) (29)

where l is the iteration number, Eq. (27) to Eq. (29) consti-

tute the proposed algorithm to estimate the 3D shape pro-

file d̄ using a few observations from the stack of blurred
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observations. The shape profile d̄ can be obtained by alter-

natively minimizing the Eq. (27) with respect to d̄ and Eq.

(28) with respect to u while updating the dual variable b

according to Eq. (29).

Since the Eq. (27) contains all differentiable quadratic

terms, its least square solution can be obtained easily us-

ing gradient based approach. The update equation for d̄ is

hence given by

d̄t+1 = d̄t − δ
d̄

( q
∑

m=1

∂em

∂d̄
+

λ

2

∂

∂d̄
‖d̄t − ut − bt‖22

)

(30)

where δ
d̄

is the step size, t is iteration number of gradient

descent algorithm for estimating d̄ and em represents the

data fidelity term given by

em =
1

2
‖ym −Xhpm

(d̄)‖22 (31)

From Eq. (13) and Eq. (20), it is clear that, the kernel

hpm
at a point (i, j) in an image depends on the σm(i, j),

which in turn depends on the depth d̄(i, j) at that point.

Hence the partial derivative of data fidelity term ∂em
∂d̄

can be

written using chain rule as

∂em

∂d̄
=

∂σm

∂d̄
· ∂hpm

∂σm

· ∂em

∂hpm

(32)

We now provide the details for each term in the RHS of

the Eq. (32). According to Eq. (13)

σm(i, j) = ρRv

(

1

wd

− 1

wd +m∆d− d̄(i, j)

)

(33)

lexicographically arranging {σm(i, j)} into a vector σm,

and differentiating with respect to d̄, we get

∂σm

∂d̄
=

∂

∂d̄
ρRv

(

1

wd

− 1

wd +m∆d− d̄(i, j)

)

= − ρRv

(wd +m∆d− d̄(i, j))2

(34)

Differentiating the Eq. (20) with respect to σm we get

∂hpm

∂σm

=
hpm

(i, j; k, l)

σ3(k, l)

(

d(i, j; k, l)

−
∑

k

∑

l

hpm
(i, j; k, l)d(i, j; k, l)

) (35)

where d(i, j; k, l) = (i−k)2+(j− l)2. Differentiating Eq.

(31) with respect to hpm
we get,

∂em

∂hpm

=
1

2

∂

∂hpm

(

ym −Xhpm

)T (

ym −Xhpm

)

=
1

2

∂

∂hpm

(

yT
m − hT

pm
XT

)(

ym −Xhpm

)

= XT
(

Xhpm
− ym

)

(36)

Gradient of the quadratic penalty term is given by

1

2

∂

∂d̄
‖d̄− u− b‖22 =

1

2

∂

∂d̄
(d̄T − uT − bT )(d̄− u− b)

= [d̄− (u+ b)]

(37)

The update equation Eq. (30) can now be written as

d̄t+1 = d̄t − δ
d̄

( q
∑

m=1

∂em

∂d̄
+ λ

[

d̄
t − (ut + bt)

]

)

(38)

Solution to Eq. (28) can be obtained in the same way as in

[7, 8]. To obtain the optimal solution of u, we can mini-

mize Eq. (28) with respect to each group of similar patches

Rju in the estimated structure d̄, respectively, and then ag-

gregate all the estimated patches to derive the final solution

of u. For each group of similar patches Rju, we have the

following minimization problem

Rju
l+1 = ‖Rju

l‖w,⋆ +
λ

2
‖Rju

l − (Rjd̄
l+1 −Rjb

l)‖22
(39)

The solution of the Eq. (39) with WNNM-NNGT is given

by

Rju
l+1 = U

(

diag(d1, d2, ..., dn)
0

)

VT (40)

where

(

Rjd̄
l+1 −Rjb

l
)

= U

(

diag(σd̄b,1, σd̄b,2, ., σd̄b,n)
0

)

VT

(41)

di = max

((

σd̄b,i −
w2

i

σd̄b,i

)

, 0

)

for i = 1, 2, ...., n, with

weights wi =
c
√
Nsp

σi(Rju
l+1)+ε

. After finding the solutions

ˆ̄d
l+1

and ul+1 alternatively, the dual variable bl+1 is up-

dated according to Eq. (29).

5.2. Specular Region Segmentation and Shape Re­
covery

Existence of specular reflections in observations of the

SFF stack results in erroneous estimate of 3D structure at

that region. We use the all-in-focus image of 3D specimen

to localize the specular regions wherein estimates of 3D

shape is erroneous. We divided the entire focus image into

super-pixels using the method proposed in [21]. The ob-

tained group of super-pixels are separated into two clusters

corresponding to specular and non-specular regions using k-

means clustering algorithm [22]. Using the located specular

regions we generate a binary mask which is used to repair
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the estimated erroneous shape profile. We inpainted the es-

timated shape profile with the aid of the generated binary

mask using the proposed WNNM-NNGT approach. Let d̄e

be the estimated erroneous shape profile, S be an opera-

tor which acts as a binary mask identifying the specular re-

gions, the proposed objective function used to estimate the

inpainted shape ˆ̄dn is given by

ˆ̄dn = argmin
d̄n

1

2
‖d̄e − S · d̄n‖22 +

∑

j∈P
‖Rjd̄n‖w,∗ (42)

where first term in Eq. (42) represents data fidelity term and

second term is the WNN prior for shape profile inpainting.

The inpainted shape profile ˆ̄dn of Eq. (42) is obtained using

split-Bregman method in the same fashion as outlined in

section 5.1.

5.3. Estimation of All­in­focus Image

Although, one can ideally solve for the focused image in

the optimization framework proposed here, in order to avoid

excessive computational expense we use the simple method

given in [9, 17] using sum-modified-Laplacian (SML) fo-

cus measure operator. The procedure is as follows: when

the 3D object is imaged, a particular point on the 3D speci-

men gets focused if it cuts the focusing plane. At that point,

the blur parameter σ is zero. For a particular pixel (i, j), we

compute the SML focus measure, using a window around

the point in every frame of the captured stack. The frame for

which the focus measure profile peaks, is the frame wherein

the pixel (i, j) is in best focus. For every point on the 3D

specimen, we can choose the frame in which it comes into

focus, and pick the corresponding pixel intensity for the fo-

cused image x from that frame. Following this procedure

for every pixel (i, j) we estimate the entire focused image

x. Even though the estimate so obtained is an approxima-

tion to the actual focused image, this is sufficient to estimate

the shape profile using the proposed approach.

6. Experimental Results

In this section we demonstrate the results of our ap-

proach using low rank prior. Initially, we conducted syn-

thetic experiments using the proposed method, wherein,

known depth maps are used to generate the space-variantly

blurred observations synthetically with the ‘calf’ texture

from the Brodatz album [46] chosen as focused image. We

also conducted experiments on real-world blurred observa-

tions of 3D objects captured using the Nikon LV 150 in-

dustrial microscope for imaging. The value of working

distance wd = 8.8mm, focal length f = 80mm and the

depth-of-field = 48.9µm. The PSF of the camera was as-

sumed to be circularly symmetric Gaussian [44]. In syn-

thetic experiments, we assumed random initial estimate of

the depth generated using ‘randn’ function of Matlab. In

real-world experiments, we derived the initial estimate of

the structure and the focused image from the stack of obser-

vations using the SFF technique proposed in [9]. Using the

estimated focused image and few space-variantly blurred

observations, the depth d̄ is estimated by minimizing the

proposed objective function using split-Bregman algorithm.

We ran a fixed number of iterations of conjugate gradient

algorithm [47, 48] using adaptive step size with line-search

[49] to minimize Eq. (27). We alternatively minimized Eq.

(28) using WNNM-NNGT at each Bregman iteration and

subsequently updated the dual variable using Eq. (29). Pa-

rameter λ is empirically chosen to control the quality of the

estimated output. We compare our algorithm with several

state-of-the-art SFF techniques [9, 15, 16, 17, 36] in the re-

cent literature.

6.1. Synthetic Data

Initially, we used a known depth map of a face (Red-

Indian) and the Art depth map of Middlebury dataset [50]

to generate space-variantly blurred observations. We simu-

lated the translation of the object in steps of ∆d = 25µm

relative to the camera and obtained the observation stack.

(a) (b) (c) (d) (e)
Figure 2. (a) Focused image. (b) to (e) Blurred images correspond-

ing to translation steps m = 140, 175, 185 and 200, respectively.

In the first synthetic experiment we used a depth map of

a face (Red-Indian) to generate the blurred observations of

size 120× 120 pixels according to Eq. (22) with translation

step m = [140, 170, 185 and 200] which are shown in Fig.

2 (b) to Fig. 2 (e). The corresponding focused image is

given in Fig. 2 (a).

(a) (b)

Figure 3. (a) Singular value thresholding functions. (b) Data cost

of WNNM and WNNM-NNGT for 3D structure estimation.

Firstly, we compared the performance of the pro-

posed WNNM-NNGT algorithm using non-negative Gar-

rote thresholding with WNNM using soft thresholding for
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(a) (b) (c) (d) (e) (f) (g)
Figure 4. (a) Ground truth shape profile. (b)-(g): Estimated shape profile using methods in [9], [15], [16], [17], [36] and the proposed

algorithm, respectively.

synthetic case of face (Red-Indian) depth map. Fig. 3 (a)

shows the difference between hard thresholding, soft thresh-

olding and Garrote thresholding functions indicated using

plots with dashed, dotted and solid lines, respectively. Fig.

3 (b) shows the plot of data cost versus number of Bregman

iterations. From Fig. 3 (b), we observe that convergence

rate of the proposed WNNM-NNGT algorithm for depth es-

timation is better than WNNM algorithm.

The value of λ in Eq. (38) is found empirically and fixed

as λ = 1 × 106 in our all synthetic experiments. Fig. 4

shows the comparison of the results of the proposed ap-

proach for synthetic face depth map (Red-Indian) with other

state-of-the-art SFF techniques. In Fig. 4 (g) we observe

that our approach has successfully reconstructed most of the

details such as nose, eyes, lips, texture of the feathers, even

the philtrum and left ear-ring.

Fig. 5 shows in detail the superiority of the proposed

algorithm over the method in [36] for face depth map (Red-

Indian). Fig. 5 (a) shows the ground truth depth map (b)

and (c) represents the results obtained using [36] and the

proposed approach, respectively. In Figs. 5 (b) and (c), it is

difficult to visually discern the superiority of our approach

over the method in [36]. Therefore, we estimate the residual

map by taking absolute difference between the estimated

and the ground truth depth maps which are shown in Figs.

5 (d) and (e), respectively.

a) (b) (c) (d) (e)
Figure 5. (a) Ground truth depth profile of face (Red-Indian).

(b),(c) Depth profile estimated using [36] and the proposed algo-

rithm, respectively. (d),(e) Residual maps corresponding to (b),(c).

The PSNR values of the estimated results are calculated

PSNR = 10 log

(

d̄
2
max

MSE

)

, where d̄max = 3200µm is the

maximum value of depth d̄. Variation of PSNR in dB and

mean square error (MSE) with respect to number of Breg-

man iterations is shown in Figs. 6 (a) and 6 (b), respectively.

We observe that the PSNR of depth profile estimated using

low rank prior is better than the state-of-the-art method pro-

(a) (b)
Figure 6. (a) Plot of PSNR values and (b) Mean square error values

versus number of Bregman iterations, respectively.

posed in [36].

a) (b) (c) (d) (e)
Figure 7. (a) Ground truth depth profile of the Art depth map taken

from Middlebury data set [50]. (b), (c) Depth profile estimated us-

ing [36] and the proposed algorithm, respectively. (d), (e) Residual

map corresponding to (b), (c).

In the second synthetic experiment, we consider the Art

depth map taken from Middlebury dataset [50] to generate

the stack of blurred observations of size 140 × 140 pixels

by considering translation step m = [20, 35, 185 and 200].
Fig. 7 (a) shows the ground truth depth map. The results

obtained using [36] and the proposed approach are shown in

Figs. 7 (b) and (c), respectively. The residual maps obtained

by taking absolute difference between the estimated and the

ground truth depth map and are shown in Figs. 7 (d) and (e),

respectively which show the superiority of our technique.

In Table 1. we provide a quantitative comparison of the

proposed algorithm with [36] in terms of MSE, PSNR and

SSIM parameters corresponding to face (Red-Indian) depth

map and Art depth map.

6.2. Real­world Data Sets

In the first real-case experiment, we used a coin as the

specimen, with the head of a lion engraved on it. A stack of

images of size 227 × 197 pixels are captured using Nikon

LV 150 industrial microscope by moving the translational
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(a) (b) (c) (d) (e) (f) (g)
Figure 8. (a) Focus image. (b)-(g): Estimated shape profile using methods in [9], [15], [16], [17], [36] and the proposed algorithm,

respectively.

Table 1. Quantitative evaluation of our and the method in [36].

Methods MSE PSNR in dB SSIM

Face depth TV [36] 8.226e-10 40.951 0.9999

Ours 3.202e-10 45.048 1.0000

Art depth TV [36] 4.658e-9 33.420 0.9999

Ours 6.907e-10 41.710 1.0000

stage in-step of ∆d = 25µm. The estimated focused im-

age is shown in the first row of Fig. 8 (a). The initial

estimate of the 3D profile for real-world cases is obtained

using SFF method as given in [9] after median filtering us-

ing a 25 × 25 kernel. We used two images corresponding

to m = [10, 20] from the captured stack to estimate the

structure. An empirical value of λ = 1 × 109 is used in

our experiments to estimate the structure. Figs. 8 (b) to (g)

shows the recovered shape using the state-of-the-art tech-

niques in [9, 15, 16, 17, 36] and the proposed approach,

respectively. As compared to other state-of-the-art tech-

niques, our algorithm successfully reconstructed the finer

details such as eyes, nostrils, hair on the lion’s mane, etc.

For the second experiment using a real 3D object, we im-

aged a small portion of a coin depicting a wheel. A stack

of images of size 219 × 219 pixels are captured using the

same industrial microscope as in the previous case by mov-

ing the translational stage in-step of ∆d = 25µm. The es-

timated focused image is shown in second row of Fig. 8

(a). Using the estimated focus image and four blurred im-

ages from the stack corresponding to m = [30, 40, 70, 80]
and λ = 5 × 109, we estimated the structure. Recov-

ered shape profile using the state-of-the-art techniques in

[9, 15, 16, 17, 36] and the proposed approach are shown

Figs. 8 (b) to (g), respectively. As compared to other state-

of-the-art techniques our approach is more successful in re-

constructing fine variations like spokes of the wheel.

In the third experiment, we used a metal ring as a 3D

specimen which had the face of a man engraved on its sur-

face. Using fixed steps of ∆d = 25µm we captured the

image stack with each observation of size 140 × 140 pix-

els. Using estimated focus image shown in third row of

Fig. 8 (a) and the observations corresponding to m =
[85, 95, 130, 140], we estimated the shape profile by choos-

ing an empirical value of λ = 1 × 108. In Figs. 8 (b)

to (g) we present the results obtained using the methods in

[9, 15, 16, 17, 36] and the proposed approach, respectively.

6.3. Structure Recovery at Specular Regions

To recover the structure at specular regions, we divide

the entire focused image into super-pixels first using the

technique in [21]. A binary mask corresponding to spec-

ular regions is generated by clustering the group of super-

pixels into specular and non-specular regions with the aid

of k-means clustering algorithm [22]. We inpainted the er-

roneous shape profile at specular regions by minimizing the

objective function in Eq. (42). The rows of Fig. 9 (a) rep-

resent the focused images of the three real-word datasets,

Fig. 9 (b) depicts the estimated super-pixels of the focused

images and the generated binary masks are shown in Fig.

9 (c), respectively. Erroneous shape profile and the in-

painted structure are given in columns of Fig. 9 (d) and (e).

Columns (f) and (g) of Fig. 9, show 3D plots of estimated
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(a) (b) (c) (d) (e) (f) (g)
Figure 9. Result of depth inpainting at specular regions. (a) Focused image. (b) Estimated super-pixels of focused image using [21]. (c)

Estimated binary mask using k-means clustering. (d) Erroneous 3D structure. (e) Inpainted 3D structure. (f) 3D plot of erroneous structure.

(g) 3D plot of inpainted depth profile.

and inpainted shape profiles, respectively.

(a) (b) (c) (d)
Figure 10. (a) Erroneous shape profile. (b) Inpainted structure

using [51]. (c) Recovered shape profile using [52]. (d) Results of

the proposed method.

We compared the performance of the proposed inpaint-

ing approach with other state-of-the-art inpainting tech-

niques in [51, 52]. The estimated shape profile erroneous

at specular regions is shown in Fig. 10 (a). Inpainted depth

maps obtained using the methods in [51, 52] and the pro-

posed algorithm are shown in Figs. 10 (b), (c) and (d), re-

spectively. From Fig. 10 (d), we observed that the proposed

algorithm for inpainting the erroneous depth map performs

superior than the other state-of-the-art inpainting techniques

[51, 52].

Throughout our experiments, we assumed an additive

white, zero mean, Gaussian noise (AWGN) model. This

is a realistic mathematical model for our imaging condi-

tions since adequate bright light illuminates the 3D spec-

imen as it is translated under the lens of the microscope.

Only when physical constraints such as low-power light

source, short exposure time affect imaging the major source

of noise would be strongly signal-dependent. Consequently,

it would be more reasonable to model noise as Poisson-

distributed.

7. Conclusion

We proposed an algorithm to estimate the structure of 3D

objects using low rank prior in SFF. Since, 3D structure es-

timation is an ill-posed inverse problem, we used WNN as

a regularizer and optimized the proposed objective function

using split-Bregman technique. We adopted a new singu-

lar value thresholding scheme, WNNM-NNGT, instead of

soft-thresholding to achieve superior convergence. We have

addressed the problem of specular reflections which is in-

evitable in SFF and recovered the inpainted structure.
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