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Abstract

In this paper, we propose to factorize the convolutional

layer to reduce its computation. The 3D convolution op-

eration in a convolutional layer can be considered as per-

forming spatial convolution in each channel and linear

projection across channels simultaneously. By unravel-

ling them and arranging the spatial convolutions sequen-

tially, the proposed layer is composed of a low-cost sin-

gle intra-channel convolution and a linear channel projec-

tion. When combined with residual connection, it can ef-

fectively preserve the spatial information and maintain the

accuracy with significantly less computation. We also in-

troduce a topological subdivisioning to reduce the connec-

tion between the input and output channels. Our experi-

ments demonstrate that the proposed layers outperform the

standard convolutional layers on performance/complexity

ratio. Our models achieve similar performance to VGG-

16, ResNet-34, ResNet-50, ResNet-101 while requiring

42×,7.32×,4.38×,5.85× less computation respectively.

1. Introduction

Deep convolutional neural networks (CNN) have made sig-

nificant improvement on solving visual recognition prob-

lems since 2012[13][20][9][19][6]. Thanks to their deep

structure, vision oriented layer designs, and efficient train-

ing schemes, state-of-the-art CNN models [19][6] obtain

better than human level accuracy on ImageNet LSVRC

dataset [2].

The computational complexity for the state-of-the-art

models for both training and inference are extremely high,

requiring several GPUs to train for hundreds of hours. The

most time-consuming building block of the CNN, the con-

volutional layer, is performed by convolving the 3D input

data with a series of 3D kernels. The complexity of a con-

volutional layer is quadratic with three hyper-parameters:

kernel size, number of channels, and spatial dimensions.On

one hand, the recognition capability of the network is highly

correlated with those hyper-parameters; On the other hand,

a balance has to be cautiously controlled among them to

keep the computation affordable. In practice, 1 × 1 and

3× 3 kernels are widely used, and the increase of channels

is often accompanied with the reduction of spatial dimen-

sions.

Several attempts have been made to reduce the amount

of computation in convolutional layers. Low rank de-

composition has been extensively explored in various fash-

ions [3][10][25][8][22][11][24] to obtain moderate effi-

ciency improvement. Sparse decomposition based meth-

ods [16][5] achieve higher theoretical reduction of com-

plexity, while the actual speedup is bounded by the effi-

ciency of sparse multiplication implementations. Most of

these decomposition-based methods start from a pre-trained

model, and perform decomposition and fine-tuning while

trying to maintain the accuracy. This essentially precludes

the option of designing and training new efficient CNN

models from scratch.

On the other hand, in recent state-of-the-art deep CNN

models, several heuristics are adopted to alleviate the bur-

den of heavy computation. In [20], the number of channels

are reduced by a linear projection before the actual convolu-

tional layer; In [6], the authors utilize a bottleneck structure,

in which both the input and the output channels are reduced

by linear projection; In [21], 1 × n and n × 1 asymmet-

ric convolutions are adopted to achieve larger kernel sizes.

While these strategies help to moderately trim down the

computation of deep models in practice, they are not able

to provide a comprehensive analysis of optimizing the effi-

ciency of the convolutional layer.

In this work, we propose to factorize the standard con-

volutional layer to reduce the computational complexity.

In standard convolutional layers, the 3D convolution can

be considered as performing intra-channel spatial convolu-

tion and linear channel projection simultaneously, leading

to highly redundant computation. Following [16], these two

operations are first unraveled to 2D convolution with a set

of bases in each channel and subsequent linear channel pro-

jection. Then, we make the further modification of perform-

ing the 2D convolutions sequentially rather than in parallel.

In this way, we obtain a convolutional layer that involves

only one 2D filter (basis) for each input channel, of which

the computation is negligible, and linear channel projection,

thus achieving significantly reduced complexity. Combined
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with the residual connection, the missing spatial informa-

tion from single 2D filter intra-channel convolution can be

retrieved. We call this kind of single intra-channel convo-

lutional (SIC) layer. By stacking multiple SIC layers, we

can train models that have several times lower complexity,

but achieve similar or higher accuracy than models based

on standard convolutional layer. Additionally, the negligi-

ble complexity from the single 2D filter in the proposed SIC

layer makes it possible to use larger the kernel size to fur-

ther improve the classification accuracy without too much

computation increase.

In an SIC layer, linear channel projection consumes the

majority of the computation. To reduce its complexity, we

propose a topological subdivisioning(TpS) framework be-

tween the input and output channels as follows: The input

and output channels are rearranged into multi-dimensional

tensors. Each output channel is only connected to the in-

put channels that are within its local neighborhood. Such a

framework leads to a regular sparsity pattern of the channel

projection kernels, which is experimentally shown to pos-

sess a better performance/cost ratio than both the standard

convolutional layer and the grouping strategy in [13].

The above two designs (SIC layer and topological sub-

divisioning) can improve the efficiency of traditional CNN

models from different perspectives, and can be combined to

achieve even lower complexity as demonstrated thoroughly

in the remainder of this paper. The proposed methods will

be explained in detail in Section 2, evaluated against tradi-

tional CNN models, and analyzed in Section 3.

2. Methods

In this section, we first review the standard convolutional

layer, then introduce the proposed methods. In this work, all

the input is padded with zeros so that the spatial dimensions

of output is the same as input. We also assume that the

residual learning technique is applied to each convolutional

layer or channel-wise bottleneck structure that have same

dimension of input and output.

2.1. Standard Convolutional Layer

Consider the input data I in R
h×w×c, where h, w and c are

the height, width and the number of channels of the input

feature maps, and the convolutional kernel K in R
k×k×c×n,

where k is the size of the convolutional kernel and n is

the number of kernels.The operation of a standard convo-

lutional layer O ∈ R
h×w×n = K ∗ I is represented by the

following formula.

O(y, x, j) =

c∑

i=1

k∑

u=1

k∑

v=1

K(u, v, i, j)I(y+u−1, x+v−1, i)

(1)

Where 1 ≤ y ≤ h, 1 ≤ x ≤ w, 1 ≤ j ≤ n.

The complexity of a convolutional layer measured by the

number of multiplications is

nck2hw (2)
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Figure 1. Illustration of the convolution pipeline of standard

convolutional layer and Single Intra-channel Convolutional(SIC)

layer. In SIC layer, each input channel is first convolved with sin-

gle 2D filter, then a linear projection (1×1 convolution) is applied

to all the channels and followed by the residual connection from

the input. Multiple SIC layers are stacked sequentially with ReLU.

Since the complexity is quadratic with the kernel size, in

most recent CNN models, the kernel size is limited to 3× 3
to control the overall running time.

2.2. Single IntraChannel Convolutional Layer

2.2.1 Unravel 3D convolution

In standard convolutional layers, the output features are pro-

duced by convolving a group of 3D kernels with the input

features along the spatial dimensions. Such a 3D convo-

lution operation can be considered as a combination of 2D

spatial convolution inside each channel (intra-channel con-

volution) and linear projection across channels. For each

output channel, a spatial convolution is performed on each

input channel. The spatial convolution is able to capture lo-

cal structural information, while the linear projection trans-

forms the feature space for learning the necessary non-

linearity in the neuron layers. When the number of input

and output channels is large, typically hundreds, such a 3D

convolutional layer requires an exorbitant amount of com-

putation. A natural idea is, the 2D spatial convolution and

linear channel projection can be unraveled and performed

separately.

As is described in [16], the 4D convolutional kernel K
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can be decomposed into the bases filters B ∈ R
k×k×b×c,

and the linear projection tensor P ∈ R
b×c×n, where b is the

number of the bases, so that

K(u, v, i, j) =

b∑

t=1

B(u, v, t, i)P(t, i, j) (3)

For each input channel, the convolutional kernel is de-

composed along the spatial dimensions. The operation of

convolutional layer in Equation.1 is converted to

J(y, x, t, i) =

k∑

u=1

k∑

v=1

B(u, v, t, i)I(y+u−1, x+v−1, i)

(4)

O(y, x, j) =

c∑

i=1

b∑

t=1

P(t, i, j)J(y, x, t, i) (5)

where J ∈ R
h×w×b×c. Each channel of the input fea-

ture map is first convolved with b 2D filters(bases), generat-

ing an intermediate feature map J, of which the number of

channels is b times of the input. Then a linear channel pro-

jection is used to project the intermediate feature map onto

the output.

Unravelling these two operations (2D spatial convolution

and linear projection) provides us more freedom of model

design by tuning both the number of 2D bases b and kernel

size k. The complexity of such a layer is

bck2hw + bcnhw (6)

The first term corresponds to 2D spatial convolution and the

second term corresponds to linear projection. Typically, k2

is much smaller than n, and the majority of the computation

is consumed by the linear projection, which is linear with

the number of basis filter b. When b = k2, this is equivalent

to a full-rank decomposition of the convolutional kernel for

each input channel along the spatial dimensions. The com-

plexity of the linear projection is the same as the standard

convolutional layer; By assigning b < k2, the complexity

is lower than the standard convolutional layer in a low-rank

fashion.

2.2.2 Sequential Arrangement

Our key observation is that instead of convolving b 2D fil-

ters(bases) with each input channel simultaneously and per-

form linear projection over them altogether, we can arrange

the convolutions sequentially, interlearving with linear pro-

jection. The above convolutional layer with b 2D filters can

be transformed to a framework that has b layers. In each

layer, each input channel is first convolved with single 2D

filter(basis), then a linear projection is applied to all chan-

nels. In this manner, the number of channels are maintained

the same as the input throughout all b layers. Note that

such sequential arrangment keeps exactly the same compu-

tational complexity, with increased depth and learning ca-

pability. The complexity of each layer is thus

ck2hw + cnhw (7)

2.2.3 Residual Connection

When we consider each of the b layers, only one k × k ker-

nel is convolved with each input channel. This is equiva-

lent to a rank-1 decomposition and may seem to be a risky

choice. Each convolutional layer in a CNN network learns

higher abstract level of representation by transforming the

input information into a different space[15]. In such a pro-

cess, the useful information from the input is passed to the

subsequent layers in a more discriminative structure. With

single 2D filter for each input channel, we face the chal-

lenge of not being able to keep all the useful information

from the input data. For instance, if one filter is learned to

become a vertical edge detector, then all the horizontal in-

formation from the input channel will be lost after passing

through this filter. The subsequent layers will not recover

this information since this filter is the single path from the

input channel. This limitation potentially constrains the 2D

filters from learning discriminative local structure. How-

ever, the addition of residual connection helps to overcome

this disadvantage.

For each layer, the residual connection is added from the

input of 2D intra-channel convolution to the output of lin-

ear projection. The subsequent layers thus receive informa-

tion from both the initial input and the output of preceding

layers. We name such single intra-channel convolution and

linear projection with residual connection structure as SIC

layer. Figure.4 presents a graphical comparison between the

standard convolutional layer and our SIC layer.

2.2.4 Increasing Kernel Size

One advantage of unravelled spatial convolution and linear

projection is that, the complexity of the linear projection,

which is the majority of the layer, is not dependent on the

kernel size. While the complexity of standard convolutional

layer is proportional to k2, the complexity of the SIC layer

is proportional to 1 + k2

n
. With k2 << n, increasing k

will only lead to a fractional increase of overall complexity.

This property provides us the flexibility of adopting larger

convolutional kernel size. We will show in the experiment

section that this is an effective way of improving the perfor-

mance/complexity ratio.

2.3. Topological Subdivisioning

While SIC layer significantly reduces the complexity of

spatial convolution in a convolutional layer, we make a fur-

ther attempt to reduce the density of connection between the

input channels and output channels. In a standard convolu-

tional layer, every output channel is connected to every in-

put channel. The complexity is proportional to the product
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of input and output channels. We argue that such dense con-

nection is redundant. The grouping strategy in Alexnet[13],

although was proposed to reduce data transfering between

multiple GPUs, can be considered as the simplest way of

exploring such redundancy. In [16], the authors proved that

extremely high sparsity of the connections could be accom-

plished without sacrificing accuracy. While the sparsity was

obtained by fine-tuning and did not possess any structure,

we study to build the sparsity with more regularity.

Inspired by the topological ICA framework in [7], we

propose a s-dimensional topological subdivisioning be-

tween the input and output channels in the convolutional

layers. Without loss of generality, we assume the number

of input channels and output channels are both n. We first

arrange the input and output channels as an s-dimensional

tensor [d1, d2, ..., ds], so that n =
∏s

i=1
di.

Each output channel is only connected to its local

neighbors in the tensor space rather than all input chan-

nels. The size of the local neighborhood is defined by

another s-dimensional tensor, [t1, t2, ..., ts]. With input

and output I,O ∈ R
h×w×d1×···×ds , and kernel K ∈

R
k×k×t1×···×ts×d1×···×ds , the topological subdivisioned

convolutional layer can be formulated as:

O(y, x, j1, · · · , js) (8)

=

k∑

u,v=1

t1∑

i1=1

· · ·

ts∑

is=1

K(u, v, i1, · · · , is, j1, · · · , js)·

Ĩ(y + u− 1, x+ v − 1, j1 + i1 − 1, · · · , js + is − 1)

We use circular indexing to handle the boundary cases so

that all the output channels are connected to same number

of input channels. The complexity of the proposed topolog-

ically subdivisioned convolutional layers compared to the

standard convolutional layers can be simply measured by∏
s

i=1
ti

n
. This layer can substitute a standard convolutional

layer when k > 1, or the linear projection in SIC layer when

k = 1. Figure. 2 illustrates the 2D and 3D topological sub-

divisioning between the input and output channels.

3. Experiments

We evaluate the performance of our methods on the Im-

ageNet LSVRC 2012 dataset, which contains 1000 cate-

gories, with 1.2M training images, 50K validation images,

and 100K test images. We use Torch to train the CNN mod-

els in our framework. Our method is implemented with

CUDA and Lua based on the Torch platform. The images

are first resized with its shorter edge equal to 256, then

randomly cropped into 221 × 221 and flipped horizontally

while training. Batch normalization [9] is placed after each

convolutional layer and before the ReLU layer. We also

adopt the dropout [18] strategy with a ratio of 0.2 during

training. Standard stochastic gradient descent with mini-

batch containing 256 images is used to train the model. We

start the learning rate from 0.1 and divide it by a factor of

(a) 2D Topology

(b) 3D Topology

Figure 2. 2D and 3D topological subdivisioning. The input chan-

nels are re-arranged into 2D and 3D tensors. Each output channel

is only connected with the input channels that are in its local neigh-

borhood in the tensor space. The complexity is determined by the

neighborhood size.

10 when training error reaches plateau. For batch normal-

ization, we use exponential moving average to calculate the

batch statistics as is implemented in cuDNN [1]. The code

is run on a server with 4 Titan X GPU. For all the eval-

uated models, the top-1 and top-5 errors of validation set

with center cropping are reported.

Baseline we compare the performance and complexity of

our methods against a baseline CNN model that is built from

standard convolutional layers. The details of the baseline

model A are given in Table 1. The convolutional layers are

divided into stages according to their spatial dimensions.

Each stage includes 2 convolutional layers with kernel size

3 × 3. Inside each stage, the convolutional kernels are per-

formed with paddings so that the output has the same spa-

tial dimensions as the input. Across the stages, the spatial

dimensions are reduced by max pooling and the number of

channels are doubled by 1 × 1 convolutional layer. One

fully connected layer with dropout is added before the lo-

gistic regression layer for final classification. Residual con-

nection is added after every convolutional layer with same

number of input and output channels. The baseline model

A achieves 30.67% top-1 error rate with 1093M multiplica-

tions for each image. It should be noted that, with regard

to performance/complexity ratio, this model compares fa-

vorably to GoogLeNet[20], VGG16[17] and ResNet-18[6]

models.

We substitute the standard convolutional layers in the

baseline model A with the proposed low complexity lay-

ers. The 7 × 7 convolutional layer in the first stage and the

1× 1 convolutional layers across stages are left unchanged,

and only the 3 × 3 convolutional layers are substituted. In

the following sections, the relative complexity is also mea-

sured with regards to those layers. To make cross reference

easier and help readers keep track of all the models, each

model is indexed with a capital letter.
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Stage Output A B C D E F

1 1082 (7, 64)2

2 362
3× 3 max pooling , stride 3

(1, 128)

(3, 128)× 2 [3, 4, 128]× 2 < 3, 128 > ×2 < 3, 128 > ×4 < 3, 128 > ×6 < 5, 128 > ×4

3 182
2× 2 max pooling , stride 2

(1, 256)

(3, 256)× 2 [3, 4, 256]× 2 < 3, 256 > ×2 < 3, 256 > ×4 < 3, 256 > ×6 < 5, 256 > ×4

4 62
3× 3 max pooling , stride 3

(1, 512)

(3, 512)× 2 [3, 4, 512]× 2 < 3, 512 > ×2 < 3, 512 > ×4 < 3, 512 > ×6 < 5, 512 > ×4
(1, 1024)

12

6× 6 average pooling, stride 6

fully connected, 2048

fully connected, 1000

softmax

FLOPs 1093M 593M 268M 376M 485M 393M

Table 1. Configurations of baseline models and models with proposed SIC layers . For each convolutional layer, we use numbers in

brackets to represent its configuration. Each type of bracket correspond to one type of convolutional layer. With kernel size k, and n output

channels, (k, n) stands for a standard convolutional layer; [k, b, n] denotes an unraveled convolutional layer with b 2D filters(bases) for

each input channel; < k, n > represents an SIC layer. The number after the brackets indicates the times that the layer is repeated in the

stage. Model A is the baseline model with standard convolutional layers. Model B replaces each standard convolutional layer in stage 2,

3, 4 of model A with an unraveled convolutional layer with 4 2D filters. Model C,D and E replace one standard convolutional layer in

model A with 1, 2 and 3 SIC layers, respectively. The kernel size of models A to E is 3× 3. Model F has the same architecture as model

D except for larger kernel size (5× 5).

3.1. Single IntraChannel Convolutional Layer

Method Top-1 Top-5 Comp

A Standard Convolution 30.67% 11.24% 1

B Unraveled Convolution 30.69% 11.27% ∼ 4/9

C SIC, 2 layers / stage 32.00% 12.13% ∼ 1/9

D SIC, 4 layers / stage 29.78% 10.78% ∼ 2/9

E SIC, 6 layers / stage 28.83% 9.88% ∼ 1/3

Table 2. Top-1 & Top-5 error and complexity per stage of model

A to E. The kernel size in these models is 3 × 3. The models

with SIC layers (model C, D, E)demonstrate significantly better

performance / complexity ratio than the baseline model A.

We first substitute the standard convolutional layers in

model A with unraveled convolution layers in model B.

Each input channel is convolved with 4 2D filters(bases), so

that the complexity of B is approximately 4

9
of the baseline

model A. We then substitute standard convolutional layers

with the proposed SIC layers to form model C, D and E. In a

typical SIC layer with 3×3 kernel and more than 100 chan-

nels, the 2D spatial convolution consumes less than 10%

of total computation. The complexity of each SIC layer is

approximatley 1

9
of a standard 3 × 3 convolutional layer

in model A. Due to the extremely low complexity of SIC

layer, we can experiment with replacing one convolutional

layer using one or more SIC layers. While model A has 2

convolutional layers per stage, model C D and E has 2, 4

and 6 SIC layers per stage, which correpond to 1

9
, 2

9
and 1

3

the complexity of model A respectively. Table 1 provides

the detailed model configurations.

Table 2 lists the top-1 and top-5 errors and the complex-

ity of models from A to E. With unravelled convolution,

model B matches the error rate of model A with same num-

ber of layers but only 4

9
amount of computation. When com-

pared with model A, with the proposed SIC layer, model

C, D and E achieves +1.37%, −0.89%, and −1.84%
relative top-1 error with 1

9
, 2

9
and 1

3
amount of computa-

tion. The comparison results demonstrate that our SIC layer

based models are able to achieve remarkably higher perfor-

mance/complexity ratio than standard convolutional layer

based model.

kernel size Top-1 Top-5 FLOPs

D 3× 3 29.78% 10.78% 376M

F 5× 5 29.23% 10.48% 393M

Table 3. Compare the performance of SIC layer models with dif-

ferent kernel size. Increasing the kernel size from 3 × 3 in model

D to 5× 5 in model F will gain 0.5% better performance with less

than 5%(17M) complexity increase.

Increasing kernel size

As is analyzed in Section 2.2.4, we can increase the kernel

size of SIC layer with very little increase of complexity. To

demonstrate this advantage, we design model F by increas-

ing the kernel size of model D from 3× 3 to 5× 5. Table 3
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compares the performance and error rate between model D

and F. With 5×5 kernel size, model F obtains 0.5% perfor-

mance gain with less than 5%(17M) increase of complexity.

Increasing kernel size in the SIC layer provides us another

choice of improving the performance/complexity ratio.

3.2. Topological Subdivisioning

We first evaluate the performance of two topological sub-

divisioning(TpS) configurations on the standard convolu-

tional layers. The models with topological subdivisioning

are modified from model A by replacing each convolutional

layer with two convolutional layers with topological subdi-

visioning. Model G adopts 2D TpS with ti = di/2 for both

dimensions, which leads to a reduction of complexity by a

factor of 4. In model H, we use 3D TpS and set ti and di,
so that the complexity is reduced by a factor of 4.27. The

details of the network configuration are listed in Table 4.

Since the number of layers with TpS is twice the number

of convolutional layers in the baseline model A, the overall

complexity per stage is approximately half of model A.

Stage #Channels

2D TpS 3D TpS

d1 × d2 d1 × d2 × d3
t1 × t2 t1 × t2 × t3

2 128
8× 16 4× 8× 4
4× 8 2× 5× 3

3 256
16× 16 8× 8× 4
8× 8 4× 5× 3

4 512
16× 32 8× 8× 8
8× 16 4× 5× 6

Table 4. Configurations of model G and H that use 2D and 3D

TpS. di and ci stand for the tensor and neighbor dimensions. They

are designed so that the complexity is reduced by (approximately

for 3D) a factor of 4.

As a comparison, we also train a model I by applying the

straightforward grouping strategy [13] to model A. Both the

input and output channels are divided into 4 groups. The

output channels in each group are only connected to the in-

put channels in the corresponding group. The complexity

of each layer is also reduced 4 times in this manner. Simi-

larly, we double the number of layers per stage to make half

overall complexity.

Table 5 lists the top-1 & top-5 error rate and complexities

of model G to I.When compared with model A, while the

grouping strategy(model I) results in 0.56% higher top-1

error, both the 2D and 3D TpS models(G and H) maintain

the same or lower error rate with half complexity.

SIC layer with Topological Subdivisioning

Finally, we apply the Topological Subdivisioning to our SIC

layer models to further reduce the complexity. Model J is

modified from SIC layer based model D by doubling the

number of SIC layers in each stage and applying 2D TpS to

the linear projection in each SIC layer.

Methods Top-1 Top-5 Comp

A standard convolution 30.67% 11.24% 1

G 2D TpS 30.53% 11.28% ∼ 1/2

H 3D TpS 30.69% 11.38% ∼ 15/32

I Grouping[13] 31.23% 11.73% ∼ 1/2

Table 5. Comparing the performace of the TpS layer to standard

convolutional layer and grouping strategy. The 2D and 3D TpS

models achieve similar performance to the baseline model A with

half complexity per stage, and outperform the model with group-

ing that has similar complexity.

Table 6 evaluates the performance of SIC layer with

2D TpS structure by comparing with same complexity SIC

layer model C and standard convolutional layer model A.

Compared to the baseline model A, this model achieves

similar error rate with 1

9
complexity per stage. Compared

to model C that uses SIC layer only, model J achieves 1.2%

lower top-1 error rate with same complexity.

Methods Top-1 Top-5 Comp

A Standard Convolution 30.67% 11.24% 1

C SIC, 2 layers/stage 32.00% 12.13% ∼ 1/9

J SIC+2D TpS 30.78% 11.29% ∼ 1/9

Table 6. Compare SIC layer with 2D TpS with SIC layer and stan-

dard convolutional layer. With 1

9
complexity of standard convo-

lutional layer model A, model C with only SIC layer has 1.2%

higher top-1 error than model A, while model J that is built from

SIC layer with 2D Tps can match the error rate of model A.

3.3. Comparison with standard CNN models

In this section, we increase the depth of our models to com-

pare with recent state-of-the-art CNN models (VGG-16 and

ResNet models). To go deeper without increasing too much

complexity, we adopt the channel-wise bottleneck structure

in a similar fashion to [6]. In each channel-wise bottleneck

structure, the number of channels is first reduced by half by

the first layer, then recovered by the second layer. Such a

two-layer bottleneck structure has approximately the same

complexity to single layer with equal number of input and

output channels, thus increase the overall depth of the net-

work.

In both SIC layer and topological subdivisioning, we

substitute one high complexity layer with two low complex-

ity layers. These scheme reduces the amount of computa-

tion while at the same time increases the depth of the net-

work. When training deep models with state-of-the-art per-

formance, we will not have sufficient GPU memory if both

methods are applied. Therefore, only the SIC layer is used

in the models evaluated in this section.

Memory Usage the training memory consumption of our

models is similar to the corresponding ResNet models with

comparable performance.

Models Setting We gradually increase the number of SIC
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Model Top-1 Err Top-5 Err FLOPs # Parameters
Speedups

Theoretical Actual

VGG-16 28.5% 9.9% 16000M 138M ×1 ×1
Model L 28.30% 9.9% 381M 6.3M ×42.0 ×14.00

ResNet-34 26.73% 8.74% 3600M 21.8M ×1 ×1
Model M 26.54% 8.77% 492M 7M ×7.32 ×2.74

ResNet-50 24.01% 7.02% 3800M 24M ×1 ×1
Model N 24.11% 7.15% 866M 10.3M ×4.38 ×1.89

ResNet-101 22.44% 6.21% 7600M 43M ×1 ×1
Model O 23.33% 6.90% 1300M 14.7M ×5.85 ×2.19

Table 7. Top-1 and Top-5 validation error rate, number of FLOPs, parameters of our model and several previous work, theoretical and actual

speedups(measured by the average running time for the forward pass of the whole network). The numbers in this table are generated

with single model and center-crop. For ResNet-34, ResNet-50, ResNet-101 we use the number with Facebook’s implementation[4].
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Figure 3. Comparing top-1 error and complexity between our mod-

els and several previous work. It demonstrates that our models(red

marks) have significant performance/complexity ratio than previ-

ous work.

Top-5(Val) Top-5(Test)

Model N 7.15% 7.39%

Model O 6.90% 6.98%

Table 8. Top-5 error rate(single model, center-crop) for model N

and O on validation and test set.

layers with channel-wise bottleneck structure in each stage

and compare their complexity to recent CNN models with

similar top-1 or top-5 error. Model L and M have 8 and 12

layers in each stage. While model L and M have the same

Methods Top-5 error Actual speedup ratio

VGG-16 9.9% 1×
Low-rank[24] 10.4% 2.9×
Low-rank[22] 9.7% 2.05×

QCNN[23] 10.5% 4×
Tucker Decomposition[12] 10.6% 3.34×

our Model L 9.9% 14×

Table 9. Comparison with other acceleration methods based on

VGG-16 model

spatial dimensions and stage structures as in Table 1, model

N and O adopt the same structure as in [6]. They have

different pooling strides and one more stages right after the

first 7× 7 convolutional layer. From the second to the fifth

stage, model N has 20, 24, 24 and 32 layers, and model

O has 20, 32, 56, and 56 layers respectively. The detailed

model configurations are put in the supplemental materials.

Table 7 compares the performance and complexity of our

model from L to O with previous work. Figure 3 provides

a visual comparison in the form of scattered plot. The red

marks in the figure represent our models. All of our mod-

els demonstrate remarkably lower complexity while being

as accurate. Compared to VGG-16, Resnet-34, Resnet-50

and Resnet-101 models, our models consume 42×, 7.32×,

4.38×, 5.85× less computation respectively with similar

or lower top-1 or top-5 error. It is noteworthy that the num-

ber of parameters of our models are also 21×, 3.1×, 2.3×,

2.9× less than VGG-16 and ResNet models. Table 8 lists

the top-5 errors of model N and O on the test set.

3.4. Comparison with other acceleration methods

Most work on accelarating convolutional neural networks

restructure and finetune from off-the-shelf pre-trained mod-

els (AlexNet or VGG), while our method redesignes

the convolutional layer and trains from scratch. Ta-

ble 9 compares the speedup ratio of the accelartion

methods[24][23][12][22] that apply on VGG-16 with our

model L that has similar top-5 error. While other methods

can obtain no greater than 4× speedup, some of which with

higher error rate, our model achieves 14× speed up with

same top-5 error to orignial VGG-16 model.

3.5. Implementation details and running time

In SIC layer, most of the computation is consumed by the

linear projection, which is equivalent to a matrix multipli-

cation. We wrote a CUDA kernel to perform the 2D spatial

convolution in each channel. Our current implementation of

the TpS layer simply discards all the non-connected weights

in a convolutional layer. Unlike the random connection pat-

terns in sparsity based methods, the regular structure of TpS

layer resembles the 2D and 3D convolution operations, and
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(a) 3× 3 standard convolutional
layer

(b) 3 × 3 single intra-channel
convolutional layer

(c) 5× 5 standard convolutional
layer

(d) 5 × 5 single intra-channel
convolutional layer

Figure 4. Visualization of convolutional kernels. We compare the 3 × 3 and 5 × 5 kernels that are learned by the proposed single intra-

channel convolutional layer and the standard convolutional layer. The kernels from single intra-channel convolution exhibit a higher level

of regularity in structure.

makes writing an efficient kernel possible.

We list the theoretical and actual speedups over VGG16

and ResNet models in the last two columns of Table 7. The

actual speedups are calculated by measuring the average

running time of the forward pass, with batch size equal

to 128. The running time is measured on a workstation

with Intel Core i7-3930K CPU and NVIDIA Titan X GPU.

cuDNN v5.1 is used for acceleration. The difference be-

tween the theoretical and actual speedups is due to the fol-

lowing reasons: (i) With the use of Wingrad algorithm pro-

posed in [14], 3×3 convolutional layer has higher efficiency

than 1×1 convolutional layer; (ii) While our models have a

few times smaller number of channels than the deep ResNet

models, larger number of channels often results in higher ef-

ficiency in cuDNN’s implementation; (iii) Although ReLU

layers, residual layers, and the 2D in-channel convolution

in our SIC layers have very low complexity, they are less

optimized than the convolutional layers and take consider-

able time. We expect closer to theoretical efficiency can be

attained with an expert-level GPU implementation.

3.6. Visualization of filters

Given the exceptionally good performance of the proposed

methods, one might wonder what type of kernels are actu-

ally learned and how they compare with the ones in tradi-

tional convolutional layers. We randomly chose some 3× 3
and 5× 5 kernels in the SIC layers and the standard convo-

lutional layers from each stage, and visualize them side by

side in Figure 4.

We notice that many Gaussian or derivative of Gaussian

patterns exist in 4(b) and 4(d), kernels from our SIC layers,

especially for the 5× 5 kernels in 4(d), while the kernels in

standard convolutional layers exhibit more randomness. It

demonstrates that the kernel learned by SIC layer can pro-

vide high level of regularized structure. We attribute this

stronger regularization to the reduction of number of 2D fil-

ters (single 2D filter in SIC layer). In the SIC layer each

input channel has one 2D filter, but is connected to all the

output channels, as stated in 2.2.2, the filter is driven to learn

the important information, showing more regularized shape,

in some sense similar to the principal components in PCA .

4. Conclusion

This work introduces a novel design of low complexity con-

volutional layer in deep CNN that involves two specific im-

provements: (i) a single intra-channel convolutional (SIC)

layer ; (ii) a topological subdivision scheme. As we demon-

strated, they are both powerful schemes in different ways to

yield a new design of the convolutional layer that has higher

efficiency, while achieving equal or better accuracy com-

pared to classical designs. While the numbers of input and

output channels remain the same as in the classical mod-

els, both the convolutions and the number of connections

can be optimized against accuracy in our model - (i) re-

duces complexity by unraveling convolution, (ii) uses topol-

ogy to make connections in the convolutional layer sparse,

while maintaining local regularity. Although the CNN have

been exceptionally successful regarding the recognition ac-

curacy, it is still not clear what architecture is optimal and

learns the visual information most effectively. The methods

presented herein attempt to answer this question by focus-

ing on improving the efficiency of the convolutional layer.

We believe this work will inspire more comprehensive stud-

ies in the direction of optimizing convolutional layers in

deep CNN.
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