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Abstract

We propose a new spatio-temporal attention based mech-

anism for human action recognition able to automatically

attend to most important human hands and detect the most

discriminative moments in an action. Attention is handled

in a recurrent manner employing Recurrent Neural Network

(RNN) and is fully-differentiable. In contrast to standard

soft-attention based mechanisms, our approach does not

use the hidden RNN state as input to the attention model.

Instead, attention distributions are drawn using external in-

formation: human articulated pose. We performed an ex-

tensive ablation study to show the strengths of this approach

and we particularly studied the conditioning aspect of the

attention mechanism. We evaluate the method on the largest

currently available human action recognition dataset, NTU-

RGB+D, and report state-of-the-art results. Another ad-

vantage of our model are certains aspects of explanability,

as the spatial and temporal attention distributions at test

time allow to study and verify on which parts of the input

data the method focuses.

1. Introduction

Human action recognition is an active field in computer

vision with a range of industrial applications, for instance

video surveillance, robotics, automated driving and others.

Consumer depth cameras made a huge impact in research

and applications since they allow to estimate human articu-

lated poses easily. Depth input is helpful for solving com-

puter vision problems considered as hard when dealing with

RGB inputs only [11]. In this work we address human ac-

tiion recognition in settings where human pose is available

Figure 1: We design a new spatio-temporal mechanism con-

ditioned on pose only able to attend to the most important

hands and hidden states.

in addition to RGB inputs. The RGB stream provides addi-

tional rich contextual cues on human activities, for instance

on the objects held or interacted with.

Understanding human behavior remains a unsolved

problem compared to other tasks in computer vision and

machine learning in general. This is mainly due to the lack

of large datasets. Large datasets, such as Imagenet [29] for
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object detection has allowed powerful deep learning meth-

ods to reach super-human performances. In the field of hu-

man action recognition most of the datasets have several

hundreds or few thousand videos. As a consequence, state-

of-the-art approaches on this datasets either use handcrafted

features or are suspected to overfit on the small datasets af-

ter years the community spent on tuning methods. The re-

cent release of large scale datasets like NTU-RGB-D [30]

(⇠ 57’000 videos) will hopefully lead to better automati-

cally learned representations.

Video understanding is by definition challenging due to

its high dimensional, rich and complex input space. Most

of the time only a limited area of a video is necessary for

getting a fined-grained understanding of the action which

occurs. Inspired by neuroscience perspectives, models of

visual attention [26, 7, 32] (see section 2 for a full discus-

sion) have drawn considerable interest recently. By attend-

ing only to specific areas, parameters are not wasted on in-

put considered as noise for the final task.

We propose a method for human action recognition,

which addresses this problem by handling raw RGB input

in a novel way. Instead of taking as input the full RGB

frame, we take into account image areas cropped around

hands only, whose positions are extracted from full body

pose estimated by a middleware.

Our model uses two input streams: (i) an RGB stream

called Spatio-Temporal Attention over Hands (STA-Hands),

and (ii) a pose stream. Both are recurrent over time. A key

feature of our method is its ability to automatically draw

attention to the most important hands at each time step. Ad-

ditionally, our approach can also automatically detect the

most discriminative hidden RNN states, i.e. most discrimi-

native time instants.

Beyond of giving state-of-the-art results on the NTU

dataset, our spatio-temporal mechanism also features cer-

tain aspects of explainablity. In particular, it gives insights

into key choices made by the model at test time in the form

of two different attention distributions: a spatial one (which

hands are most important at which time instant?) and a tem-

poral one (which time instants are most important?)

The contributions of our work are as follows:

– We propose a spatial attention mechanism on human

hands on RGB videos which is conditioned on the es-

timated pose at each time step.

– We propose a temporal attention mechanism which

learns how to pool features output from the RNN over

time in an adaptive way conditioned on the poses over

the full sequence.

– We show by an extensive ablation study that soft-

attention mechanisms (both spatial and temporal) can

be done using external variables in contrast to usual

approaches which condition the attention mechanism

on the hidden RNN state.

2. Related Work

Activities, gestures and multimodal data — Recent ges-

ture/action recognition methods dealing with several modal-

ities typically process 2D+T RGB and/or depth data as 3D.

Sequences of RGB frames are stacked into volumes and fed

into convolutional layers at first stages [3, 15, 27, 28, 38].

When additional pose data is available, the 3D joint posi-

tions are typically fed into a separate network. Preprocess-

ing pose is reported to improve performance in some situ-

ations, e.g. augmenting coordinates with velocities and ac-

celeration [42]. Pose normalization (bone lengths and view

point normalization) has been reported to help in certain sit-

uations [28]. Fusing pose and raw video modalities is tra-

ditionally done as late fusion [27], or early through fusion

layers [38]. In [22], fusion strategies are learned together

with model parameters with by stochastic regularization.

Recurrent architectures for action recognition —

Most recent human action recognition methods are based on

recurrent neural networks in some form. In the variant Long

Short-Term Memory (LSTM) [12], a gating mechanism

over an internal memory cell learns long-term and short-

term dependencies in the sequential input data. Part-aware

LSTMs [30] separate the memory cell into part-based sub-

cells and let the network learn long-term representations in-

dividually for each part, fusing the parts for output. Simi-

larly, Du et al [8] use bi-directional LSTM layers which fit

anatomical hierarchy. Skeletons are split into anatomically-

relevant parts (legs, arms, torso, etc), so that each subnet-

work in the first layers gets specialized on one part. Fea-

tures are progressively merged as they pass through layers.

Multi-dimensional LSTMs [10] are models with multi-

ple recurrences from different dimensions. Originally in-

troduced for images, they also have been applied to activity

recognition from pose sequences [24]. One dimension is

time, the second is a topological traversal of the joints in a

bidirectional depth-first search, which preserves the neigh-

borhood relationships in the graph.

Attention mechanisms — Human perception focuses

selectively on parts of the scene to acquire information at

specific places and times. In machine learning, this kind

of processes is referred to as attention mechanism, and has

drawn increasing interest when dealing with languages, im-

ages and other data. Integrating attention can potentially

lead to improved overall accuracy, as the system can focus

on parts of the data, which are most relevant to the task.

In computer vision, visual attention mechanisms date as

far back as the work of Itti et al for object detection [14]

and has been inspired by works from the neuroscience com-

munity [16]. Early models were highly related to saliency

maps, i.e. pixelwise weighting of image parts that lo-
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cally stand out, no learning was involved. Larochelle and

Hinton [21] pioneered the incorporation of attention into

a learning architecture by coupling Restricted Boltzmann

Machines with a foveal representation.

More recently, attention mechanisms were gradually cat-

egorized into two classes. Hard attention takes hard de-

cisions when choosing parts of the input data. This leads

to stochastic algorithms, which cannot be easily learned

through gradient descent and back-propagation. In a semi-

nal paper, Mnih et al [26] proposed visual hard-attention for

image classification built around a recurrent network, which

implements the policy of a virtual agent. A reinforcement

learning problem is thus solved during learning [37]. The

model selects the next location to focus on, based on past

information. Ba et al [2] improved the approach to tackle

multiple object recognition. In [20], a hard attention model

generates saliency maps. Yeung et al [41] use hard-attention

for action detection with a model, which decides both which

frame to observe next as well as when to emit an action pre-

diction.

On the other hand, soft attention takes the entire input

into account, weighting each part of the observations dy-

namically. The objective function is usually differentiable,

making gradient-based optimization possible. Soft atten-

tion was used for various applications such as neural ma-

chine translation [5, 18] or image captioning [39]. Recently,

soft attention was proposed for image [7] and video under-

standing [32, 33, 40], with spatial, temporal and spatio-

temporal variants. Sharma et al [32] proposed a recurrent

mechanism for action recognition from RGB data, which

integrates convolutional features from different parts of a

space-time volume. Yeung et al. report a temporal recur-

rent attention model for dense labeling of videos [40]. At

each time step, multiple input frames are integrated and soft

predictions are generated for multiple frames. An extended

version of this work has been proposed [23] by also taking

into account the optical flow. Bazzani et al [6] learn spatial

saliency maps represented by mixtures of Gaussians, whose

parameters are included into the internal state of a LSTM

network. Saliency maps are then used to smoothly select

areas with relevant human motion. Song et al [33] propose

separate spatial and temporal attention networks for action

recognition from pose. At each frame, the spatial attention

model gives more importance to the joints most relevant

to the current action, whereas the temporal model selects

frames.

Up to our knowledge, no attention model has yet taken

advantage of articulated pose for attention over RGB se-

quences.

Our method has slight similarities with [26] in that crops

are done on locations in each frame. However, these oper-

ations are not learned, they depend on pose. On the other

hand, we learn a soft-attention mechanism, which dynam-

Figure 2: The spatial attention mechanism: SA-Hands.

ically weights features from several locations. The mech-

anism is conditional on pose, which allows it to steer its

focus depending on motion.

3. Proposed Model

A single or multi-person action is described by a sequence

of two modalities: the set of RGB input images I={It},

and the set of articulated human poses x={xt}. Both sig-

nals are indexed by time t. Poses xt are defined by 3D co-

ordinates of joints. We propose a hands spatio-temporal at-

tention based mechanism conditioned on pose. This stream

processes RGB data I and also uses pose information x

(human body joint locations and their dynamics). Our two-

stream model comprises the aggregation of the streams pre-

sented below.

3.1. SA-Hands: Spatial Attention on Hands

Most of the existing approaches for human action recog-

nition focus on pose data, which provides good high level

information of the body motion in an action but somewhat

limits feature extraction. A large number of actions such

as Reading, Writing, Eating, Drinking share the same body

motion and can be differentiated only by looking at manip-

ulated objects and hands shapes. Performing fine-grained

understanding of human actions can be handled by extract-

ing cues from the RGB streams.

To solve this, we define a glimpse sensor able to crop

images around hands at each time step. This is motivated

by the fact that humans perform most of their actions us-

ing their hands. The cropping operation is done using the

pixel coordinates of each hand detected by the middleware

(up to 4 hands for human interactions between 2 people).

The glimpse operation is fully-differentiable since the exact

locations are inputs to the model. The goal is to extract in-

formation about hand shapes and about manipulated objects

and to draw attention to specific hands.
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The glimpse representation for a given hand i is a con-

volutional network fg with parameters θg (e.g. a pretrained

Inception v3), taking as input a crop taken from image It at

the position of hand i:

vt,:,i = fg(crop(It, handi); θg) i={1, . . . 4} (1)

Here and in the rest of the paper, subscripts of mappings f

and their parameters θ choose a specific mapping, they are

not indices. Subscripts of variables and tensors are indices.

vt,:,i is a (column) feature vector for time t and hand i. For a

given time t, we stack the vectors into a matrix V t={vt,:,i},

where i is the index over hand joints and j the index over

the feature dimensions . V t is a matrix (a 2D tensor), since

t is fixed for a given instant.

A recurrent model receives inputs from the glimpse sen-

sor sequentially and models the information from the seen

sequence with a componential hidden state ht:

ht = fh(ht−1, ṽt; θh) (2)

We select the GRU as our recurrent function fh. To keep

the notation simple, we omitted the gates from the equa-

tions. The input fed to the recurrent network is the context

vector ṽt, defined further below, which corresponds to an

integration of the different features vectors extracted from

hands in V t.

An obvious choice of integration are simple functions

like sums and concatenations. While the former tends to

squash feature dynamics by pooling strong feature activa-

tions in one hand with average or low activations in other

hands, the latter leads to high capacity models with low gen-

eralization.

We employ a soft-attention mechanism which dynami-

cally weighs the integration process through a distribution

pt, determining how much attention hand i needs with a cal-

culated weight pt,i. We define the augmented pose vector

x̃t defined by the concatenation of the current pose xt, the

acceleration ẋt and the velocity ẍt for each joint over time.

At each time step, x̃t gives a brief overview of human poses

on the scene and their dynamics. In contrast to mainstream

soft-attention based mechanisms [32, 1, 23], our attention

distribution does not depend on the previous hidden state

ht−1 of the recurrent network, but exclusively depends on

an external information defined just above: the augmented

pose x̃t.

Finally the spatial attention weights pt are given through

a learned mapping with parameters θp:

pt = fp(x̃t; θp) (3)

Remark that if we replace x̃t by ht−1 in equation 3 we get

the usual soft-attention mechanism by conditioning the at-

tention weights on the hidden state [32]. Attention distri-

bution pt and features V t are integrated through a linear

Figure 3: The temporal attention mechanism: ST-Hands

.

Figure 4: The spatio-temporal attention mechanism: STA-

Hands. The spatial mechanism is detailed in figure 2 and

the temporal one is details in figure 3

combination as

ṽt = V tpt , (4)

which is input to the GRU network at time t (see eq. (2)).

The conditioning on the augmented pose in 3 is important,

as it provides valuable body motion information at each

timestep (see the ablation study in the experimental sec-

tion).

We refer to this model as SA-Hands in our table. For a

better understanding of this module, a visualization can be

found in Figure 2.
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Figure 5: Spatial attention over time: shaking hands will make the attention shift to hands in action.

3.2. ST-Hands: Temporal Attention on Hidden
States

Recurrent models can provide predictions for each time step

t by performing a mapping directly from the hidden state

ht. Some hidden states are more discriminative than other

one. Following this idea we perform a temporal pooling

on the hidden state level in an adaptive way. At the end of

the sequence an attention mechanism automatically gives

weights for each hidden states.

The hidden states for all instants t of the sequence are

stacked into a 2D matrix H={hj,t}, where j is the index

over the hidden state dimension. A temporal attention dis-

tribution p0 is predicted through a learned mapping to au-

tomatically identify the most important hidden states (i.e.

the most important time instants t). To be efficient, this

mapping should have seen the full sequence before giving a

prediction for an instant t, as giving a low weight to features

at the beginning of a sequence might be caused by the need

to give higher weights to features at the end.

To keep the model simple, we benefit from the fact that

sequences are of fixed length. We define a statistic called

augmented motion mt given by the sum of the absolute ac-

celeration and the sum of the absolute velocity of all body

joints at each time step t. mt is a vector of size 2 and we

obtain M by stacking all mt. M gives a good overview

of when most important moments occur. Our assumption is

that higher values of mt indicate more useful instants t. But

of course the network can learn more complex mappings

reacting to more complex motion or poses. The temporal

attention weights are given by the mapping:

p0 = f 0

p(M ; θ0p) (5)

This attention is used as weight for adaptive temporal pool-

ing of the features H , i.e.

h̃ = Hp0 .

We called this module ST-Hands. A visualization of the

module can be found in figure 3.

The spatial and temporal attention mechanism are inde-

pendent of each other. When both are combined we call the

model Spatio-Temporal Attention over Hands (STA-Hands).

A visualization of the overall RGB stream can be found in

figure 4.

Related work — note that most current work in sequence

classification proceeds by temporal pooling of individual

predictions, e.g. through a sum or average [32] or even by

taking predictions of the last time step. We show that it can

be important to perform this pooling in an adaptive way. In

recent work on dense activity labeling, temporal attention

for dynamical pooling of LSTM logits has been proposed

[40]. In the context of sequence-to-sequence alignment,

temporal pooling has been addressed with bi-directional re-

current networks [4].

3.3. Deep GRU: Gated Recurrent Unit on Poses

Above, the pose information was used as valuable input to

the RGB stream. Articulated pose is also used directly for

classification in a second stream, the pose stream. We pro-

cess the sequence of pose, where at each time step t, xt is

a vector which represents the concatenation of 3D coordi-

nates of joints of all subjects. The raw pose vectors are input

into a RNN.

In particular, we learn a pose network fsk with parame-

ters θsk on this input sequence x, resulting in a set of hidden

state representation h
sk={hsk

t }:

h
sk
t = fp(h

sk
t−1

,xt; θsk) (6)

We call this baseline on poses Deep GRU in our tables.

3.4. Stream fusion

Each stream, pose and RGB, leads to its own features re-

spectively h
sk for the pose stream and h̃ for the RGB

stream. Each representation is classified with its own set
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Figure 6: Spatial attention over time: giving something to other person will make the attention shift to the active hands in

the action.

of parameters using a standard classification approach as

defined further below in 4. We fuse both streams on logit

level by summing. More sophisticated techniques, such as

features concatenation and learned fusion [28] have been

evaluated and rejected.

4. Network architectures and Training

Architectures — The pose network fp consists of a stack

of 3 GRU each with an hidden state of size 150.

The glimpse senor fg is implemented as an Inception V3

network [34]. Each vector vt,:,i corresponds to the last layer

before output and is of size 2048. The GRU network fh
has a single recurrent layer with 1024 units. The spatial

attention network fp is an MLP with a single hidden layer

of 256 units with ReLu activation. The temporal attention

network f 0

p is an MLP with a single hidden layer of 32 units

with ReLu activation. Output layers of attention networks

fp and f 0

p use the softmax activation in order to get the sum

of the attention weights equal to 1. The full model (without

glimpse sensor fg) has 10 millions trainable parameters.

Training — All classification are done using a simple

fully-connected layer followed by a softmax activation and

trained with cross-entropy loss. For the pose stream Deep

GRU the classification is learned from all the hidden states

h
sk
t . At test time we average the predictions given by each

time step since it gives better results than taking predictions

from the last hidden state.

For the RGB stream, classification using STA-Hands is

learned from the feature vector h̃. When the temporal atten-

tion (i.e.SA-Hands) is not employed in the RGB stream we

follow the same settings as described for the pose stream.

The glimpse sensor fg is pretrained on the ILSVRC 2012

data [29] and is frozen during training. Both spatial p and

temporal attention weights p0 are initialized to be equal for

each input modality. This set up leads to faster convergence

and better stability during training.

5. Experiments

The proposed method has been evaluated on the largest hu-

man action recognition dataset: NTU RGB+D. We exten-

sively tested all aspects of our model by conducting an ab-

lation study. This leads to get a proper understanding of

the choice of our proposed new spatio-temporal mechanism

and specially its conditioning aspect.

The NTU RGB+D Dataset (NTU) [30] has been ac-

quired with a Kinect v2 sensor and contains more than 56K

videos and 4 millions frames with 60 different activities in-

cluding individual activities, interactions between 2 people

and health related events. The actions have been performed

by 40 subjects and with 80 viewpoints. The 3D coordinates

of 25 body joints are provided in this dataset. We follow the

cross-subject and cross-view split protocol from [30]. Due

to the large amount of videos, this dataset is highly suitable

for deep learning modeling.

Implementation details — Following [30], we cut

videos into sub sequences of 20 frames and sample sub-

sequences. During training a single sub-sequence is sam-

pled, during testing 5 sub-sequences are extracted and logits

are averaged. We apply a normalization step on the joint co-

ordinates by translating them to a body centered coordinate

system with the ”middle of the spine” joint as the origin. If

only one subject is present in a frame, we set the coordinates

of the second subject to zero. We crop sub images of static

size 50⇥50 on the positions of the hand joints (pixel loca-
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Methods Pose RGB CS CV Avg

Lie Group [35] X - 50.1 52.8 51.5

Skeleton Quads [9] X - 38.6 41.4 40.0

Dynamic Skeletons [13] X - 60.2 65.2 62.7

HBRNN [8] X - 59.1 64.0 61.6

Deep LSTM [30] X - 60.7 67.3 64.0

Part-aware LSTM [30] X - 62.9 70.3 66.6

ST-LSTM + TrustG. [24] X - 69.2 77.7 73.5

STA-LSTM [33] X - 73.2 81.2 77.2

GCA-LSTM [25] X - 74.4 82.8 78.6

JTM [36] X - 76.3 81.1 78.7

MTLN [17] X - 79.6 84.8 82.2

DSSCA - SSLM [31] X X 74.9 - -

Deep GRU [A] X - 68.0 74.2 71.1

STA-Hands [B] ◦ X 73.5 80.2 76.9

A+B X X 82.5 88.6 85.6

Table 1: Results on the NTU RGB+D dataset with Cross-

Subject (CS) and Cross-View (CV) settings (accuracies in

%, ◦ means that pose is only used for the attention mecha-

nism).

tions of each hands are given by the middleware). Cropped

images are then resized to 299⇥299 and fed into the Incep-

tion model.

Training is done using the Adam Optimizer [19] with an

initial learning rate of 0.0001. We use minibatches of size

32, dropout with a probability of 0.5 and train our model up

to 100 epochs. Following [30], we sample 5% of the ini-

tial training set as a validation set, which is used for hyper-

parameter optimization and for early stopping. All hyper-

parameters have been optimized on the validation sets.

Comparisons to the state-of-the-art — We show com-

parisons of our model to the state-of-the-art methods in ta-

ble 1. We achieve state of the art performance on the NTU

dataset with the two-stream model even if we explicitly im-

plemented a weak model, Deep GRU, on the pose stream.

That shows the strength of our RGB stream called STA-

Hands at extracting cues. Comparing one by one our two

streams (RGB vs pose) demonstrate that STA-Hands gets

better results than Deep GRU.

We have to keep in mind that the pose is used as external

data in our RGB stream but only for the cropping operation

around hands and for computing of the attention distribu-

tions. Poses are never directly fed as input to the GRU in

STA-Hands for updating the hidden state. The purpose of

STA-Hands is to extract cues from hand shapes or manipu-

lated objects. By its design choice STA-Hands is not able

to extract body motion since pose is only used for drawing

an attention distribution over hands. However this stream

achieves better performance than the pose one. This shows

that RGB data should not be put aside for human action

recognition.

We conducted extensive ablation studies to understand

the impact of our design choices on the full model, and in

particular on the spatial attention mechanism STA-Hands.

Conditioning the spatial attention — Conditioning the

spatial attention on the statistics of the pose (augmented

pose) at each time step is a key design choice, as shown

in table 2 (SA-Hands rows). Compared to mainstream soft-

attention mechanisms, which condition attention on the hid-

den state, we gain 2 points on average (75.0 vs 73.0). Inter-

estingly, conditioning using both the hidden state and the

pose statistics deteriorates the performances (75.0 vs 73.6)

showing that different kinds of information are contained in

these two latent variables. The recurrent unit is not able to

combine those two informations or at least ignore the hid-

den state. We can conclude that the augmented pose is a bet-

ter latent variable for weighting the spatial attention com-

pared to the internal hidden state of the GRU. Compared

to simple baseline like summing the different inputs, our

methods improves the average accuracy by 3.5 points (75.0

vs 71.5). This opens new perspectives for creating attention

mechanisms conditioned on new latent variables which can

be external to the GRU (but highly correlated to the inputs

and to the final task).

Effect of the temporal attention — Weighted integra-

tion of the hidden states over time seems to be an important

design choice as shown in table 2. Compared to classical

baselines, like averaging the predictions, we improve per-

formance by 3.3 points in average (74.8 vs 71.0). Taking

only the final predictions even leads to worst performance.

Again we can see that pose and its statistics, in this case

the augmented motion, are good latent variables for (though

external from the input data but highly correlated) for com-

puting the temporal attention weights.

A powerful spatio-temporal attention mechanism —

We show consistent results by combining spatial and tem-

poral attention trained end-to-end. Conditioning the spatial

and temporal attention mechanisms on statistics of the pose

(respectively augmented pose and augmented motion) leads

to the best results. In average we gain up to 5.4 and 4.9

points compared to baseline without any attention modules

like summing or concatenating the inputs (76.9 vs 71.5 and

72.0).

Impact of the attention on the two stream model —

Again we get consistent results when going from RGB

stream only to two-stream model (pose and RGB streams).

Even if both streams are trained separately and fused at the

logit level they extract complementary features. Spatial at-

tention seems to be more important than temporal one (85.6

vs 84.2). Compared to baseline like summing inputs on

the RGB stream, our full spatio-attention mechanism con-

ditioned on poses beats the baseline by 2.8 points on the
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Methods Spatial Attention Temporal Attention CS CV Avg

Hidden state Augmented Pose Augmented Pose

Sum - - - 68.3 74.6 71.5

Concat - - - 68.9 75.2 72.0

SA-Hands

X - - 69.8 76.2 73.0

- X - 71.0 78.9 75.0

X X - 70.5 76.6 73.6

ST-Hands - - X 71.1 78.5 74.8

STA-Hands

X - X 72.2 77.8 75.0

- X X 73.5 80.2 76.9

X X X 72.8 78.3 75.6

Table 2: Effects of the conditioning on the spatial attention and the temporal attention (RGB stream only, accuracies in %).

RGB stream methods Spatial Attention Temporal Attention CS CV Avg

Hidden state Augmented Pose Augmented Motion

Sum-Hands - - - 79.5 85.9 82.8

SA-Hands

X - - 80.5 86.8 83.7

- X - 81.4 87.4 84.4

X X - 81.0 86.9 84.0

ST-Hands - - X 80.8 87.6 84.2

STA-Hands

X - X 81.4 87.4 84.4

- X X 82.5 88.6 85.6

X X X 81.6 88.0 84.8

Table 3: Effects of conditioning the spatio-temporal attention on different latent variables in the RGB stream for the two-

stream model (accuracies in % on NTU). The pose stream is always the same: (Deep GRU) for every row.

two-stream model.

Runtime — For a sequence of 20 frames, we get the

following runtimes for a single Titan-X (Maxwell) GPU

and an i7-5930 CPU: A full prediction from Inception fea-

tures takes 1.4ms including pose feature extraction. This

does not include RGB pre-processing, which takes addi-

tional 1sec (loading Full-HD video, cropping sub-windows

and extracting Inception features). Classification can thus

be done close to real-time. Fully training one model (w/o

Inception) takes ⇠4h on a Titan-X GPU. Hyper-parameters

have been optimized on a computing cluster with 12 Titan-

X GPUs. The proposed model has been implemented in

Tensorflow.

Pose noise — Crops are performed on hand locations

given by the middleware. In case of noise, crops could end

up not being on hands. We saw, that the attention model can

cope with this problem in many cases.

6. Conclusion

We propose a new method for dealing with RGB video data

for human action recognition given pose. A soft-attention

mechanisms crops on hand joints allowing the model to

collect relevant features on hand shapes and on manipu-

lated objects from more relevant hands. Adaptive temporal

pooling further increases performance. We show that condi-

tioning attention mechanisms on pose leads to better results

compared to standard approach which conditioned on the

hidden state. Our method on RGB stream can be seen as

a plugin which can be added to any powerful pose stream.

Our two-stream approach shows state-of-the-art results on

the largest human action recognition even by employing a

weak pose stream.
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