
 

 

 
Abstract 

 
Hand pose is emerging as an important interface for 

human-computer interaction. The problem of hand pose 

estimation from passive stereo inputs has received less 

attention in the literature compared to active depth sensors. 

This paper seeks to address this gap by presenting a data-

driven method to estimate a hand pose from a stereoscopic 

camera input, by introducing a stochastic approach to 

propose potential depth solutions to the observed stereo 

capture and evaluate these proposals using two 

convolutional neural networks (CNNs). The first CNN, 

configured in a Siamese network architecture, evaluates 

how consistent the proposed depth solution is to the 

observed stereo capture.  The second CNN estimates a hand 

pose given the proposed depth.  Unlike sequential 

approaches that reconstruct pose from a known depth, our 

method jointly optimizes the hand pose and depth 

estimation through Markov-chain Monte Carlo (MCMC) 

sampling.  This way, pose estimation can correct for errors 

in depth estimation, and vice versa. Experimental results 

using an inexpensive stereo camera show that the proposed 

system more accurately measures pose better than 

competing methods. 

1. Introduction 

The problem of tracking articulated objects has attracted 
increasing attention in the field of computer vision, as it 
provides a natural method of Human Computer Interaction 
(HCI) [9], [10]. Inference of the pose and gesture of the 
human hand is an important challenge in this area.  Active 
vision approaches for hand pose estimation using depth 
sensors such as Leap Motion and Kinect have made 
considerable progress in recent years.  These cameras 
actively dissipate electromagnetic waves into the scene, 
probing how far each point in the field of view is away from 
the imaging device. While active vision techniques provide 
good shape information and robustness to clutter, they 
present several limitations, including: large energy 
consumption, a poor form factor, less accurate near distance 
coverage, and poor outdoor usage. 

In contrast, in this paper we explore the use of passive 
vision for the estimation of hand pose using a stereovision 
system composed of adjacent RGB cameras.  Such a camera 

rig does not project light into the scene, and therefore has 
complementary advantages to depth imaging, including less 
energy consumption.  However, hand pose estimation in 
this context is a more challenging computer vision problem, 
one that has received less attention in the literature.  We 
address this gap by proposing a novel framework that 
combines jointly optimal depth and hand pose estimation in 
a unified framework using Markov-chain Monte Carlo 
(MCMC) sampling and deep learning.  Our research is 
motivated by the possibility of estimating articulation with 
the input of stereo cameras from an egocentric, stereoscopic 
perspective. We are inspired by human vision, which can 
efficiently discern articulations and perform tracking 
activities with passive, binocular input.  As our experiments 
show, our approach is compatible with inexpensive stereo 
vision systems, such as the rig shown in Figure 1, to 
produce robust hand pose inference. The proposed 
technique also relies on a robust hand segmentation 
procedure. We do not address hand segmentation in this 
paper as there is a large body of literature on this subject 
(see, for example, [1], [21]). 

1.1. Contribution 

Unlike several approaches to pose estimation from stereo 
capture that explicitly recover disparity before regressing 
for the pose in a sequential manner we present a joint 
optimization approach that is robust against potential errors 
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Figure 1: Using an inexpensive stereo camera RGB images 

of the hand from two perspectives are captured to regress 

for hand point 3D position (a). The proposed technique can 

use a stereo rig system to estimate hand articulation and 

pose (b). We capture training dataset using RGBD, stereo 

and hand gesture detection devices (c). 
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in the depth estimation. Thus, this reduces the burden on the 
pose estimation framework to be robust against erroneous 
depth recovery. The consequence of our approach is that we 
iteratively revise for errors in depth proposal. This allows 
for simultaneous correction of proposed depth estimation 
and the resulting pose estimation to jointly optimize the 
likelihood of the depth and hand pose estimation given the 
stereo input. 

 Lastly, unlike the work in [14], which utilizes a state-
of-the-art tracking method that is sensitive to erroneous 
initialization and anatomical hand size as discussed in [17], 
we propose a semi-generative approach that is 
experimentally proven to work on different sizes and tones 
of hand without pre-calibration.   

The rest of the paper is structured as follows: the next 
section presents a general survey of related work. Section 3 
presents a detailed description of our methodology while 
Section 4 elaborates on the details of our implementation of 
the proposed technique. Experiments and results are 
discussed in Section 5 and we conclude in Section 6. 

2. Related Work 

Unlike active depth camera based input, less work has 
been performed on stereo-based passive camera input for 
hand pose/gesture recognition. Techniques proposed to 
address stereo based hand pose estimation are largely 
grouped into two main categories, namely: depth map based 
and non-depth map. Depth map based methods assume that 
the mapping between the stereo input and hand pose is 
strongly based on disparity information being a hidden 
variable. This is largely influenced by the recent success in 
robust hand tracking and pose estimation from depth 
images. These techniques attempt to recover dense or at 
least a semi-dense depth image before applying state of the 
art depth based pose estimation. An example of this is [2], 
where a robust technique that focuses on depth recovery of 
hand pose is presented, specifically with the aim of later 
using it for hand pose estimation. [14] also proposed using 
recovered disparity for pose estimation. It utilizes an 
Adaptive GMM segmentation [19] to localize the hand skin 
region before recovering disparity based on stereo matches. 
Using the estimated hand skin region, it refines the disparity 
image recovered by constraining the disparity from 
proposed stereo matches. Finally, hand segmentation is 
further applied to the final disparity and [18] is used to track 
hand poses based on the recovered disparity image. A key 
drawback in this approach is that it assumes that the stereo 
algorithm will recover disparity/depth with same 
consistency and accuracy. This is not always the case 
particularly with a low-quality stereo camera like the one 
used in this paper. An erroneous disparity recovery will 
yield a wrong pose. 

 On the other hand, non-depth based approaches, while 
still exploiting parallax information, do not attempt to 
explicitly extract a depth map of the scene. This is typified 

by the approach presented in [15]. Here a generative hand 
model approach is used to optimize the appropriate hand 
pose that yields stereo color consistency between the two 
cameras. Like most model-driven approaches in hand pose 
recovery, it does not require the tedious procedure of 
establishing a robust dataset. However, the approach does 
require an explicit definition of the anatomical size and 
hand pose constraint for the skinned model.  Also, because 
of the method’s temporal dependency, it is sensitive to the 
initialization of the pose. Another example is [3]. Here, the 
pose estimation was preceded by first extracting the hand 
contour in both images in the stereo pair before matching 
points along contour in one image to those in the other using 
dynamic time warping. This allows for the reconstruction 
of a 3-D contour of the hand, used to establish hand contour 
tracking for subsequent finger tracking. Again, this 
approach is sensitive to the starting point selection to 
determine which pair of points on the contours serve as a 
seed to subsequent correspondence matching. Nonetheless, 
this only results in an aggregative tracking of the finger and 
pose, not providing a dense estimation of the spatial 
position of the other joints of the hand for a complete hand 
gesture/pose estimation.   

 Recently, CNNs have become a prevalent computer 
vision tool especially in stereo matching and pose 
estimation from depth images. The work in [7], implements 
a Siamese network to discriminate between similar and 
dissimilar patches from stereo pair. The work of [20] and 
[17] present the use of a CNN to regress for a heat map that 
indicates the likelihood that a joint will be at a 3D location.  
Unlike CNNs, Markov-chain Monte Carlo (MCMC) has 
been an ever-popular machine learning tool. It allows for 
the sampling in very high dimensional space with no 
analytical estimation of the probability of such space. 
Previously, MCMC has been used explicitly in data 
association and detection [4], [12], [13] and [16]. Inspired 
by these references, we apply MCMC to stochastically 
propose depth images that are tested against observed stereo 
information and prior probability to estimate the hand pose. 

3. Methodology 

In hand pose estimation, we aim to regress for the spatial 
location of the different hand joints given a pair of images 
from a stereo capture of the hand. In this work, we 
recognize the success of depth data in non-rigid body pose 
estimation, hence we aim to exploit this as a hidden variable 
between a stereo image input variable and the spatial pose 
output. To this end, we conceptualize our problem to jointly 
solving for two variables: the depth image and the spatial 
pose of hand joints.   

3.1. Stereo-Depth-Pose 

For a given stereo image pair, ࡿ of a scene of a hand pose, ࡴ with a depth image, ࡰ, we assume that the hand pose 
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induces a depth surface, that in turn induces the detected 
stereo image in a Bayesian tree model. See Figure 2a. Our 
goal is then reduced to establishing the pose, ࡴ∗ and depth, ࡰ∗ values that maximize the posterior distribution of ࡴ and ࡰ given an observed stereo image pair, ࡴ  .ࡿ∗, ∗ࡰ = 	argmaxு, ܲሺࡿ|ࡰ,ࡴሻ																	ሺͳሻ 

 Following from our Bayesian tree model, we assume 
that ࡴ and ࡿ are conditionally independent, given ࡰ. This 
implies  ܲሺࡰ|ࡴ,ࡿሻ = ܲሺࡰ|ࡿሻܲሺࡰ|ࡴሻ                 (2) 
and ܲሺࡰ,ࡴ|ࡿሻ = ܲሺࡰ|ࡿሻ.																									ሺ͵ሻ 
From Bayes’ theorem, we can infer that ܲሺࡰ,ࡴ|ࡿሻ 	= ܲሺࡿ|ࡰ,ࡴሻܲሺࡿሻܲሺࡰ,ࡴሻ ,																ሺͶሻ 
and that given Eq. 3 and Eq. 4 we have that   	ܲሺࡿ|ࡰ,ࡴሻ 	= ܲሺ|ࡿ	ࡰሻ	ܲሺࡰ,ࡴሻܲሺࡿሻ .																ሺͷሻ 
Note ܲሺࡰ,ࡴሻ = 	ܲሺࡰ|ࡴሻܲሺࡰሻ, then from Eq. 5 we have 
that  ܲሺࡿ|ࡰ,ࡴሻ 	= ܲሺ|ࡿ	ࡰሻ	ܲሺࡰ|ࡴሻܲሺࡰሻܲሺࡿሻ 																ሺሻ 
and that Eq. 1 can be represented as  ࡴ∗, ∗ࡰ = 	argmaxு, ܲሺ|ࡿ	ࡰሻ	ܲሺࡰ|ࡴሻܲሺࡰሻ.									ሺሻ 
The posterior joint probability of ࡴ and ࡰ yields a very high 
dimensional space. An intuitive solution to this joint 
probability will be to first determine the depth image, ࡰ∗ 
that best describes the observed stereo image pair, ࡰ ,࢙∗ = argmaxࡰ ܲሺࡿ =    ሺͺሻ																						ሻࡰ	|࢙
before using ࡰ∗ to resolve for the corresponding pose, 

∗ࡴ  = argmaxࡴ 	ܲሺࡰ|ࡴ∗ሻܲሺࡰ∗ሻ.																			ሺͻሻ 
This is the approach of several papers on hand pose 
estimation from stereo capture, including [2], [3] and [14]. 
Here the aim was to first establish a robust depth image 
given a stereo image capture that can then be used to predict 

the hand pose. However, this does not fully optimize the 
pose-depth joint probability space. This is because it 
assumes that the depth that maximizes ܲሺࡰሻ coincide with 
the point (i.e. the pose and depth image) that maximizes in 
the pose-depth joint distribution. This is not always the 
case. Consider Figure 2c, where a hypothetical joint 
distribution between ࡴ and ࡰ is presented for a given stereo 
image pair.  The maximum probability is indicated with the 
red dot. First marginalize along ࡴ for the depth probability, 

ܲሺࡰሻ = 	∑ ܲሺࡰ,ࡴሻࡴ  to identify ࡰ∗(analogous to resolving 
for a robust depth from a given a stereo image pair as in Eq. 
 - ሻ∗ࡰ|ࡴis then determined by maximizing ܲሺ ∗ࡴ .(8
illustrated with the red dotted line (analogous to Eq. 9). 
Note how the optimized maximum does not coincide with 
the joint maximum. Secondly, it assumes that the depth 
image resolved from the stereo image is fully correct or else 
even more robust and complex pose estimation from depth 
techniques will be required to handle erroneous depth 
recovery. Inspired by [4] we take a different approach. We 
search for the optimum ࡰ∗ along the manifold described by 
the optimum ࡴ for all potential depth images, as in    ࡰ∗ = argmaxࡰ 	ሾ߶ு 	ܲሺࡰ|ࡿሻሿ,														ሺͳͲሻ 
where ߶ு 	= 	maxࡴ {	ܲሺࡰ|ࡴሻܲሺࡰሻ}.										ሺͳͳሻ 
and in turn compute ࡴ∗ using Eq.9. Note the effect of this 

MCMC 
Sampler 

Depth 

Stereo 
Capture 

Pose 

Pose Prior 

propose 

Similarity 

Net. 

Pose Estimation 

Net.

ܲሺࡰ|ࡴ,ࡿሻ 

Figure 2: (a) Bayesian tree model of the relationship between depth, stereo images and hand pose in our proposed model.

(c) Illustrates a conventional approach to estimating pose from stereo capture, where the optimum depth is first resolved

and then used to factorize the joint probability to identify the maximizing pose. (b) Our approach on the other stochastically

propose potential depth solution (along the black line) and then we establish a maximizing pose. This will guarantee

identifying the joint maximum point (illustrated with the red dot) with enough depth proposals.   
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Figure 3: An illustration of our MCMC proposal approach. 

The probability of the proposed depth and the recovered 

pose is used to inform the next depth proposal.  
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has shown in Figure 2b, where the manifold is illustrated 
with the black line. Thus, we iteratively travel through the 
high dimensional space of the depth and the pose, by 
proposing a depth and evaluating for the Eq. 6 in search for 
a maximum.  

3.2. Probability of observed stereo image given proposed 
depth 

 To efficiently propose a depth image, first we segment 
the reference stereo image1 into superpixels using SLIC [5]. 
We represent a hand depth image with a vector ࢊ of the 
depth values of all the superpixels that lie within the hand 
region. Henceforth, we will refer to this vector as the depth 
configuration vector. For a proposed depth image, we have ܲሺࡰ|ࡿሻ = logቐෑܲ൫ࡿห ݀൯

 ቑ =݈ܲൣ݃൫ࡿห ݀൯൧
 ,			ሺͳʹሻ 

where there are ܬ hand superpixels. We model the 
probability of a stereo image pair given the depth the ݆௧ 
superpixel, ܲ൫ࡿห ݀൯ as the re-projection affinity of the 
proposed ݀. For a proposed depth, we use the intrinsic and 
extrinsic parameters of the stereo rig, to re-project pixels in 
the reference stereo image plane onto the corresponding 
image plane, before computing affinity. We quantify the 
quality of a proposed depth based on how re-projected 
superpixel matches the original superpixel. Hence, we have 
that for stereo image pair with superpixel,	ݔ 	in the left 

image with a centroid pixel position, ቈݔݕ and a proposed 

depth ݀,   
                                                           

1 The reference stereo image is one of the two images in the pair such 
that each pixel in the reference image, we seek a correspondence in the 

ܲ൫ࡿห ݀൯ = ݔ൫ܫ൫ܥ , ,൯ݕ ோ∗ݔோ൫ܫ ,  ሺͳ͵ሻ						൯	ோ∗൯ݕ
where ܥሺ	, ሻ is a window based matching cost function that 
gives a measure of affinity and   ݔ	ோ∗ݕ	ோ∗ ൨ = ܨ ቀቂݔݕቃ , ݀ቁ = ݀ ቈݔݕͳ ࡼି ଵሾ࢚|ࡾሿࡼோ .								ሺͳͶሻ 
Here ࡼ and ࡼோ  are the projection matrices of the left and 
right stereo camera pair and ࡾ	and ࢚ are the relative 
extrinsic matrix and vector respectively – established for 
the stereo camera using [6].  We represent ܥሺ	, ሻ, as a 
Siamese network, as in [7]. The first subnet consists of a 
pair of layers, each composed of convolution followed by 
ReLU, as shown in Figure 4a. This is followed by the P-
Distance layer that computes the square distance of each 
feature vector in one of the pair of subnet to the other. 
Finally followed by four fully connected (fc) and then 
ReLU layers, and then a fully connected then sigmoid layer. 
The output of the sigmoid layer is the similarity score, ܥሺ	, ሻ. Hence the probability of the observed stereo image, ࡿ given a proposed depth configuration, ܲሺࡰ|ࡿሻ is 
modelled as the similarity of the disparity correspondence 
resolved from the proposed depth.   

3.3. Probability of pose conditioned on depth 

The second component is the probability of the pose, ࡴ 
given depth, ࡰ. Note that the ultimate task is to establish ߶ு, where we redefine it as  											߶ு = ܲ ൬ࡴ = 	argmaxࡴ {	ܲሺࡰ|ࡴ	ሻ}൰ ܲሺࡰሻ,				ሺͳͷሻ 
such that ܲሺࡴ =  ࢎ ,ሻ is the probability of unique poseࢎ

based on the hand pose prior distribution. Hence, we apply 
a discriminative model that resolves for pose, ࡴ  given ࡰ. 

other image. Hence a resulting disparity image registers perfectly with the 
reference stereo image. 

Figure 4: Structure of two CNN used. (a)  a Siamese Network used as a similarity measure between two potentially matching

square patches of pixels, (b) illustrates the structure used for discriminatively regressing for pose given a depth image. 

a.  

b.   
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We then assume that the discriminatively resolved pose, ࡴ  

is the pose that maximizes the posterior, argmaxࡴ ܲሺࡰ|ࡴሻ 
and that ܲሺࡴ = ࡴሻ is the maximum posterior probability, maxࡴ ܲሺࡰ|ࡴሻ. The discriminative model used here is also a 

CNN. We refer to this CNN as the pose-estimation network. 
This CNN takes a single channel depth image (from the 
proposed depth configuration) and outputs a ͵ ∗ -ܭ
dimensional vector that represents the 3D spatial 
coordinates of all ܭ joints that describe a hand pose. So, in 
effect, for a given depth image, the pose-estimation network 
computes a single pose. ߶ு is the product of the probability 
of the estimated pose (based on the pose prior, ܲሺࡴሻ) and 
the probability of the given depth image (based on the depth 
image prior, ܲሺࡰሻ). Both priors are described in the 
following subsection. The structure of the pose-estimation 
network is illustrated in Figure 4b. This consists of six 
convolutional layers (each followed with a ReLU and three 
also with a Pooling layer) followed by four fully connected 
layers (each followed with a ReLU layer except the last). 
The output of the final fully connected indicates the joint 
positions.     

3.4.   Prior over Depth and Pose 

Pose: Let 	ࢎ denote the hand pose vector in a ͵ ∗ -ܭ
dimensional space V. To establish a pose prior over the 
hand, we add a constraint that resolved joint configuration 
should be a member of a subspace, ࢃ ⊂ V. We establish a 
criterion for ࢃ, based on the components that spans the 
poses in our prior dataset. Applying principal component 
analysis (PCA) on the prior dataset of potential hand poses, 
the ܰ most significant components were established, ࡱ =ሾࢋଵ, … , ܰ	 ேሿ whereࢋ ≪ ͵ ∗  We then apply a constraint .ܭ
that a newly resolved pose ࢎ′ should be represented by a 
linear combination of the established component, ࢎᇱ − ࣆ ൎ∑ ܽࢋே . Where ࣆ and ܽ denote the mean pose of all joint 
configurations in the prior dataset and a scalar value 
respectively. To this end, we established the probability of 
a resolved pose ࢎ’ as  ܲሺࡴ = ሻ′ࢎ = ݁  ሺͳሻ																ᇲ||ࢎିࣆା∗ࢇࡱ||	

where ࢇ∗ = ᇱࢎାሺࡱ −  ሺͳሻ																								ሻࣆ
where ||. || denotes the ݈ଶ-norm and ࡱା is the pseudo-

inverse of the ࢇ .ࡱ∗ is then the least square estimation to the 
coefficients of the components that yields ࢎ′ under a linear 
combination. We then use the exponentiated Euclidean 
distance between this linear combination of components 
and ࢎᇱ as a measure of prior probability. In effect, a 3D joint 
configuration (pose) that is like those in the dataset will be 
more accurately mapped onto W and re-mapped back.  

Depth: Using the hand region segmentation, the 
Euclidean distance between the mean hand pixel position in 
both images of the stereo pair is used to estimate the general 
distance of the hand to the camera, using the baseline and 

focal lengths of the stereo rig. The prior of over depth at all 
superpixels in the scene is modelled with a Gaussian, with 
a mean as the estimated general distance,	ܴ and an arbitrary 

standard deviation, σ, as in  ܲሺࡰ = ሻࢊ = ∑ ଵఙ√ଶగ ݁൫షೃ൯మమ . 

3.5. Metropolis-Hastings Algorithm 

To achieve an informed framework for proposing depth 
images (configuration), we exploit Markov-chain Monte 
Carlo. We iteratively propose a new depth configuration, ࡰ′ 
conditioned on the previous proposal, ݍሺࡰᇱ,  ሺሻሻ. Weࡰ
implement this distribution by randomly perturbing the 
elements of the depth vector ࢊሺሻ that describes ࡰሺሻ. Hence 
the probability of the newly proposed depth vector, ࢊ′ is 
conditioned on the previous depth proposal, ࢊሺሻ.   We then 
evaluate for the acceptance ratio, ߙ, where ߙ൫ࡰᇱ, ሺሻ൯ࡰ = ݉݅݊ ቊͳ, ܲሺࡰᇱ, ,ሺሻࡰ	ሻܲ൫ࡿ|ᇱࡴ  ሺͳͺሻ						൯ቋࡿሺሻหࡴ
and  ࡴᇱ =	maxு ܲሺࡰ,ࡴ′ሻ. Note that we ignore the ratio of 

the probability of proposing a particular ࡰᇱ given ࡰሺሻ, ݍሺࡰᇱ,  ሺሻሻ  and the reverse, as these are equal and henceࡰ
cancel out. If the acceptance ratio is higher than ݑ, a sample 
between 0 and 1, the proposed depth configuration and the 
corresponding maximizing pose are considered as a 
potential candidate for solution. Hence the higher the 
probability of the newly proposed depth configuration 
(relative to the previous proposal) the more likely it would 
be accepted as a potential solution. We evaluate all potential 
solutions by maximizing for Eq. 6. See above for the 
pseudo-code of the Metropolis-Hastings Algorithm. The 
effect from this is that we evaluate for the depth 
configuration that is most consistent with the observed 
stereo capture and that yields the more probable pose, from 
a sample set with a distribution that is consistent with the 
solution. This is because the MCMC samples the depth 

 ;	∗ࡴ ;	ࡿ
Initialize  ࡰሺሻ , ࡴሺሻ ࡴmax݃ݎܽ	= ܲ൫ࡴหࡰሺሻ൯;  
Let ࡰ∗ = ,ሺሻࡰ	 ∗ࡴ = ݅		ܚܗ ;ሺሻࡴ = Ͳ		ݐ	ܮ − ͳ	ܗ܌ 

Sample u ~	 ሾܷ,ଵሿ; 	 
Sample	ࡰᇱ~	ݍሺࡰᇱ|ࡰሺሻሻ	; 
if ݈݃ሺݑሻ 	< ሺାଵሻࡰ ሺሻሻሻ  thenࡰ|ᇱࡰሺߙሺ݈݃	 = ሺାଵሻࡴ  ;′ࡰ = ࡴmax݃ݎܽ ܲ൫ࡴหࡰሺାଵሻ൯; 	 
else ࡰሺାଵሻ = ሺାଵሻࡴ  ;ሺሻࡰ =  	 ;ሺሻࡴ
end ܑ	ܲ	ሺࡴሺାଵሻ, ሻࡿ|ሺାଵሻࡰ > ܲሺࡴ∗, ∗ࡰ then		ሻࡿ|∗ࡰ ∗ࡴ ;ሺାଵሻࡰ 	=  ; ሺାଵሻࡴ 	=
end 

end
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configuration based on the same criteria, i.e. the depth that 
are more consistent with the stereo capture and that yields 
more probable pose are proposed more.    

4. Implementation details 

   Both the pose-estimation and similarity networks were 
implemented using the VLFeat MatConvNet [8] and trained 
on a NVIDIA Titan X GPU with 6GB memory.    
Similarity Network: This CNN was trained with the 
learning rate of 0.001. We ran 10 epochs, reducing the 
learning rate by 10% every epoch. The decay weight and 
momentum was set as 0.0005 and 0.09 respectively. Like 
[7], we train the similarity network to map a pair of window 
regions, < ,ሻሺܫ ሻோሺܫ	 >  from the left and right stereo 
pair to a cost, ܿ. For each superpixel, a square window 
region centered on its centroid pixel is considered. We base 
this on a hinge loss,	݉ܽݔሺͲ, ݃ + ܿି + ܿାሻ, where ݃, ܿି and ܿା are the margin, output of the CNN from a non-matching 
input window patch pair and the output of the CNN from a 
matching input window patch pair. We establish matching 
pair windows by reprojection based on the camera 
parameters of the stereo cameras and the ground truth depth 
at the superpixel. We set the value of ݃ to Ͳ.ʹ. 
Pose-Estimation Network: The pose-estimation network 
has a significantly greater number of weights due to the 
larger input image. This explains the need of the pooling 
layers absent in the similarity network. We train this CNN 
with a learning rate of 0.00001 for 150 epochs. Decay 
weight and momentum were set as 0.005 and 0.09 
respectively. We train under a mean squared error between 
the output vector and the ground truth pose vector.  
The prediction phase of the entire framework for a frame of 
stereo images under 200 MCMC proposals will took 360 
seconds. See Figure 3 for the entire framework. Here 
proposed depth is evaluated with the Similarity Network 
and simultaneously used to recover pose using the Pose 
Estimation Framework that is evaluated against the Pose 
prior. 

5. Experiment and Results 

We present a proof of concept by evaluating the 
performance of the proposed technique. The approach was 
validated experimentally, presenting both qualitative 
(Figure 7) and quantitative (Figure 6a) results. Four main 
comparisons were made, these include: pose estimation 
prediction made from single shot depth recovery, 
estimation made without our pose prior; estimation made 
using proposal in [2]; and estimation made using depth 
acquired using active RGBD camera sensor. The results 
were quantitatively appraised for accuracy by computing 
the percentage of correctly predicted joint position, 	∑ ி{|࢙ಸି࢙|ழீ}ചಿ ே , where ࢙ீ் and ࢙ are the ground truth 

and the predicted 3D joint position of all joints,  in the 
testing dataset; 	ܨ{} is a function that returns 1 for true input 
and 0 otherwise; and N is the to total number of joints 
evaluated (across all the frames). We also computed the 

mean distance error,	ଵே∑ ீ்࢙| − |ఢே࢙  to quantitatively 

evaluate the performance of the test.  

5.1. Dataset 

To establish a database of strong registration between the 
triplet of data: stereo, depth and pose, acquisition was 
carried out on the stereo camera, a RGBD camera, and an 
off-the-shelf hand pose detector. The RGBD and stereo 
cameras were almost adjacently positioned with the pose 
detector positioned perpendicularly as shown in Figure 1c. 
Using camera calibration [6], depth data from an RGBD 
sensor was registered to the left image of the RGB pair. It 
suffices that the spatial position of the hand pose detector 
relative to the stereo camera is unchanged during capture of 
training data. To train the similarity network, a binary class 
dataset was to be created with matching pairs of image 
patches (from the left and right stereo image) considered as 
a positive class and non-matching considered otherwise. In 
the case of the pose-estimation network.  
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Data was captured from 12 participants (12,000 stereo 
pairs in total) of different skin tone, hand size and gender. 
Data from two participants was reserved for testing, and the 
remaining data (from the other ten participants) was used 
for training in a cross validation manner. SLIC 
segmentation was applied to all reference stereo images, 
producing approximately 300 superpixels per image. Note 
that only a fraction of these 300 superpixels are hand region 
superpixels. The amount of hand superpixels (ranging 
approximately from 30 to 60 per image capture) depends on 
the distance from camera and the size of the hand. All in all, 
about 540,000 patches where used in training the similarity 
network. Each hand pose is represented by 20 joints i.e. ܭ	 = 	ʹͲ. These included the wrist; the thumb (fingertip, 
distal and intermediate); the index, middle, ring and pinky 
finger (each with a fingertip, distal, intermediate and 
proximal joint). 

5.2. Baseline Comparison 

 To optimize the performance of our proposed technique 
we experimented with two significant parameters. These 
includes the window size (of stereo comparison) and 
number of components used to store pose prior information. 
The window size determines the size of the input stereo pair 
regions that is fed into the similarity network for 
comparison and subsequently, the number of the weights of 
the similarity network. From Figure 5, one can identify a 
gradual improvement in the accuracy as the size of the 
window reduces. 41×41, 31×31 and 21×21 window sizes 
yielded a 18.23%, 35.54% and 65.218% of accurately 
predicted joint position within an error of 35 mm, 
respectively. This trend stops when a window size of 11 × 
11 window is applied, resulting in 13% accurate predictions 
(see Figure 5a). A second parameter was the number of 
components used. Recall from Eq. 16 and 17 that from the ͵	 ∗  components only ܰ are used. The significance of the ܭ	
number of components used, is also presented in Figure 5. 

Figure 5b illustrates the increase in the percentage of 
accurate joint prediction as the number of components 
increases, however this improvement in prediction 
performance stops after 10 to 18 of the most significant 
components have been used.  
  As well as the parameter evaluation, two baseline 
comparisons were made. The first was predicting the pose 
using a single shot depth estimation, and the second was 
predicting pose without the pose prior.  
Single-shot depth recovery: For a given stereo capture, we 
evaluate all potential matching pixels along the epipolar 
line on the corresponding stereo pair under the Similarity 
Network and apply a greedy search approach to establish a 
disparity image. We then apply the pose-estimation 
network to directly estimate for the pose. Figure 6a 
validates our hypothesis presented in Section 3.1. The 
superiority of our jointly optimal, iterative depth proposal 
is apparent here, particularly at lower error thresholds. The 
ability to continuously reevaluate the depth solution whilst 
resolving for pose contributes to this performance. In fact, 
there is a 389.8% more correctly predicted joint positions 
(within a 35mm error margin) when our approach is taken 
in comparison to the single shot approach. Although this 
superiority diminishes as the error threshold increases, our 
iterative approach produces a more accurate hand pose 
estimation from stereo capture. The qualitative results in 
Figure 7 (4th row) corroborates this result, as better pose 
estimation is achieved with our approach in comparison – 
particularly in the first, fourth and fifth columns.  
GMM prior: Another component of our derivation is the 
pose prior. We evaluate the effectiveness of our PCA based 
approach by comparing it against a GMM (Gaussian 
Mixture Model) based approach. For this we apply an 
expectation maximization to establish a ͵ ∗  dimensional ܭ
GMM model that represents the probability of a pose (as in 
[11]). We experiment to establish the optimum component. 
We present the performance of this approach in Figure 6a. 

a.    b.  

0

0.2

0.4

0.6

0.8

1

1.2

10 20 30 40 50 60 70 80 90

%
 o

f 
jo

in
ts

 e
rr

o
r 

w
it

h
in

 G

Max allowed dist from GT - G (mm)

CNN-MCMC (Ours)

GMM Prior

Single CNN Shot

0

10

20

30

40

50

60

Wrist Thumb Index Middle Ring Pinky Ave.

M
e

a
n

 E
rr

o
r 

D
is

ta
n

ce
 (

m
m

)

CNN-MCMC Eigen-Depth Active Depth

Figure 6: A baseline comparison of our approach. (a) The graph illustrates the percentage of accurately predicted joint pose

prediction (within a margin of error), for our approach in comparison to the single shot depth estimation and to GMM based 

prior. (b) Bar chart showing the mean joint position error per finger for our approach, the work proposed in [2] and RGBD

camera based pose estimation.    

601



 

 

Again, results show the significance of the PCA based 
model, with our approach producing 109.6% more correctly 
predicted joint positions (within a 35mm error margin). 
This is largely owed to the first identifying the highly 
discriminating components in the pose subspace before 
establishing a prior model. This superiority is shown in 
Figure 7 (3rd row), particularly in the first, third and sixth 
columns. Our PCA based approach better constraints for a 
more realistic hand pose.       

5.3. Comparison against [2]  

 To further validate our work against published literature 
we evaluate performance of our work to the work proposed 
in [2]. As introduced in Section 2, [2] regresses for robust 
hand depth estimation using eigen leaf node based variant 
of a regression forest. The paper motivates its approach 
with depth recovery specifically for hand pose estimation. 
To evaluate this, we applied the pose-estimation network to 
directly regress for pose from the recovered depth using the 
approach in [2]. We present, the performance in Figure 6b. 
Again, like the single shot approach this approach performs 
significantly less than our joint optimization approach. On 
average our approach preforms 29.55% better than the 
proposal in [2] (29.80 mm to 42.32mm error). This 
corroborates the significance of jointly optimizing for both 
pose and depth. The single shot approach assumes a high-
quality depth prediction and will yield a poor result when 
the preceding depth estimation is poor.         

5.4. Comparison against Active Depth Sensor  

 To evaluate the significance of the work done in the 
general context of gesture recognition, we compare the 
accuracy of the pose estimation prediction made to pose 
estimation made from depth image acquired from the 
RGBD camera. Again, we apply pose estimation using the 

pose-estimation network. Figure 6b presents the evaluative 
comparison. Compared to our approach, the RGBD based 
pose prediction was relatively more accurate in predicting 
thumb, the index and ring finger joints. This is due to large 
variance in their 3D position across the training and testing 
dataset. Across all five fingers, the mean joint position error 
of estimated pose from the RGBD depth image is 21.99mm, 
this is only 9.304mm lower than the mean joint position 
error of our technique (30.802mm). Considering the low-
quality nature of the stereo camera used the proposed 
approach exhibits robustness against inconsistency and 
noise in stereo capture to an extent that it is on par with pose 
estimation made from an active depth sensor. This is 
significant, has it shows potential of overcoming the 
drawbacks of RGBD discussed in Section 1 without a 
significant drop in the accuracy of pose estimation.          

6. Conclusion 

In this work, we present a novel approach to pose 
estimation from stereo capture by proposing a MCMC-
CNN approach of joint optimization. We have shown 
experimentally, that our joint optimization approach 
outperforms the conventional single shot depth estimation 
approach. For future work, we aim to propose a closed form 
solution to the estimation of the depth configuration by 
establishing a parametric relationship between the depth 
configuration and the stereo cost. This will allow for the 
parallelizing the CNN execution in a single run to achieve 
a real-time pose estimation.   
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Figure 7: Qualitative results of pose estimation using real stereo captured poses. The reference image of the stereo pair is 

shown in the 1st row. The results from our full technique are presented in the 2nd row. The 3rd row shows the pose estimation 

result from using our method but with a GMM pose prior while 4th row shows result from using the single-shot CNN. 
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